Metamath Proof Explorer


Theorem wfrlem14OLD

Description: Lemma for well-ordered recursion. Compute the value of C . Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypotheses wfrlem13OLD.1 RWeA
wfrlem13OLD.2 RSeA
wfrlem13OLD.3 F=wrecsRAG
wfrlem13OLD.4 C=FzGFPredRAz
Assertion wfrlem14OLD zAdomFydomFzCy=GCPredRAy

Proof

Step Hyp Ref Expression
1 wfrlem13OLD.1 RWeA
2 wfrlem13OLD.2 RSeA
3 wfrlem13OLD.3 F=wrecsRAG
4 wfrlem13OLD.4 C=FzGFPredRAz
5 1 2 3 4 wfrlem13OLD zAdomFCFndomFz
6 elun ydomFzydomFyz
7 velsn yzy=z
8 7 orbi2i ydomFyzydomFy=z
9 6 8 bitri ydomFzydomFy=z
10 1 2 3 wfrlem12OLD ydomFFy=GFPredRAy
11 fnfun CFndomFzFunC
12 ssun1 FFzGFPredRAz
13 12 4 sseqtrri FC
14 funssfv FunCFCydomFCy=Fy
15 3 wfrdmclOLD ydomFPredRAydomF
16 fun2ssres FunCFCPredRAydomFCPredRAy=FPredRAy
17 15 16 syl3an3 FunCFCydomFCPredRAy=FPredRAy
18 17 fveq2d FunCFCydomFGCPredRAy=GFPredRAy
19 14 18 eqeq12d FunCFCydomFCy=GCPredRAyFy=GFPredRAy
20 13 19 mp3an2 FunCydomFCy=GCPredRAyFy=GFPredRAy
21 11 20 sylan CFndomFzydomFCy=GCPredRAyFy=GFPredRAy
22 10 21 imbitrrid CFndomFzydomFydomFCy=GCPredRAy
23 22 ex CFndomFzydomFydomFCy=GCPredRAy
24 23 pm2.43d CFndomFzydomFCy=GCPredRAy
25 vsnid zz
26 elun2 zzzdomFz
27 25 26 ax-mp zdomFz
28 4 reseq1i CPredRAz=FzGFPredRAzPredRAz
29 resundir FzGFPredRAzPredRAz=FPredRAzzGFPredRAzPredRAz
30 wefr RWeARFrA
31 1 30 ax-mp RFrA
32 predfrirr RFrA¬zPredRAz
33 ressnop0 ¬zPredRAzzGFPredRAzPredRAz=
34 31 32 33 mp2b zGFPredRAzPredRAz=
35 34 uneq2i FPredRAzzGFPredRAzPredRAz=FPredRAz
36 un0 FPredRAz=FPredRAz
37 35 36 eqtri FPredRAzzGFPredRAzPredRAz=FPredRAz
38 28 29 37 3eqtri CPredRAz=FPredRAz
39 38 fveq2i GCPredRAz=GFPredRAz
40 39 opeq2i zGCPredRAz=zGFPredRAz
41 opex zGCPredRAzV
42 41 elsn zGCPredRAzzGFPredRAzzGCPredRAz=zGFPredRAz
43 40 42 mpbir zGCPredRAzzGFPredRAz
44 elun2 zGCPredRAzzGFPredRAzzGCPredRAzFzGFPredRAz
45 43 44 ax-mp zGCPredRAzFzGFPredRAz
46 45 4 eleqtrri zGCPredRAzC
47 fnopfvb CFndomFzzdomFzCz=GCPredRAzzGCPredRAzC
48 46 47 mpbiri CFndomFzzdomFzCz=GCPredRAz
49 27 48 mpan2 CFndomFzCz=GCPredRAz
50 fveq2 y=zCy=Cz
51 predeq3 y=zPredRAy=PredRAz
52 51 reseq2d y=zCPredRAy=CPredRAz
53 52 fveq2d y=zGCPredRAy=GCPredRAz
54 50 53 eqeq12d y=zCy=GCPredRAyCz=GCPredRAz
55 49 54 syl5ibrcom CFndomFzy=zCy=GCPredRAy
56 24 55 jaod CFndomFzydomFy=zCy=GCPredRAy
57 9 56 biimtrid CFndomFzydomFzCy=GCPredRAy
58 5 57 syl zAdomFydomFzCy=GCPredRAy