Description: Lemma for well-ordered recursion. Compute the value of C . Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfrlem13OLD.1 | |
|
wfrlem13OLD.2 | |
||
wfrlem13OLD.3 | |
||
wfrlem13OLD.4 | |
||
Assertion | wfrlem14OLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem13OLD.1 | |
|
2 | wfrlem13OLD.2 | |
|
3 | wfrlem13OLD.3 | |
|
4 | wfrlem13OLD.4 | |
|
5 | 1 2 3 4 | wfrlem13OLD | |
6 | elun | |
|
7 | velsn | |
|
8 | 7 | orbi2i | |
9 | 6 8 | bitri | |
10 | 1 2 3 | wfrlem12OLD | |
11 | fnfun | |
|
12 | ssun1 | |
|
13 | 12 4 | sseqtrri | |
14 | funssfv | |
|
15 | 3 | wfrdmclOLD | |
16 | fun2ssres | |
|
17 | 15 16 | syl3an3 | |
18 | 17 | fveq2d | |
19 | 14 18 | eqeq12d | |
20 | 13 19 | mp3an2 | |
21 | 11 20 | sylan | |
22 | 10 21 | imbitrrid | |
23 | 22 | ex | |
24 | 23 | pm2.43d | |
25 | vsnid | |
|
26 | elun2 | |
|
27 | 25 26 | ax-mp | |
28 | 4 | reseq1i | |
29 | resundir | |
|
30 | wefr | |
|
31 | 1 30 | ax-mp | |
32 | predfrirr | |
|
33 | ressnop0 | |
|
34 | 31 32 33 | mp2b | |
35 | 34 | uneq2i | |
36 | un0 | |
|
37 | 35 36 | eqtri | |
38 | 28 29 37 | 3eqtri | |
39 | 38 | fveq2i | |
40 | 39 | opeq2i | |
41 | opex | |
|
42 | 41 | elsn | |
43 | 40 42 | mpbir | |
44 | elun2 | |
|
45 | 43 44 | ax-mp | |
46 | 45 4 | eleqtrri | |
47 | fnopfvb | |
|
48 | 46 47 | mpbiri | |
49 | 27 48 | mpan2 | |
50 | fveq2 | |
|
51 | predeq3 | |
|
52 | 51 | reseq2d | |
53 | 52 | fveq2d | |
54 | 50 53 | eqeq12d | |
55 | 49 54 | syl5ibrcom | |
56 | 24 55 | jaod | |
57 | 9 56 | biimtrid | |
58 | 5 57 | syl | |