Metamath Proof Explorer


Theorem xmulcand

Description: Cancellation law for extended multiplication. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Hypotheses xmulcand.1 φA*
xmulcand.2 φB*
xmulcand.3 φC
xmulcand.4 φC0
Assertion xmulcand φC𝑒A=C𝑒BA=B

Proof

Step Hyp Ref Expression
1 xmulcand.1 φA*
2 xmulcand.2 φB*
3 xmulcand.3 φC
4 xmulcand.4 φC0
5 xrecex CC0xC𝑒x=1
6 3 4 5 syl2anc φxC𝑒x=1
7 oveq2 C𝑒A=C𝑒Bx𝑒C𝑒A=x𝑒C𝑒B
8 simprl φxC𝑒x=1x
9 8 rexrd φxC𝑒x=1x*
10 3 adantr φxC𝑒x=1C
11 10 rexrd φxC𝑒x=1C*
12 xmulcom x*C*x𝑒C=C𝑒x
13 9 11 12 syl2anc φxC𝑒x=1x𝑒C=C𝑒x
14 simprr φxC𝑒x=1C𝑒x=1
15 13 14 eqtrd φxC𝑒x=1x𝑒C=1
16 15 oveq1d φxC𝑒x=1x𝑒C𝑒A=1𝑒A
17 1 adantr φxC𝑒x=1A*
18 xmulass x*C*A*x𝑒C𝑒A=x𝑒C𝑒A
19 9 11 17 18 syl3anc φxC𝑒x=1x𝑒C𝑒A=x𝑒C𝑒A
20 xmullid A*1𝑒A=A
21 17 20 syl φxC𝑒x=11𝑒A=A
22 16 19 21 3eqtr3d φxC𝑒x=1x𝑒C𝑒A=A
23 15 oveq1d φxC𝑒x=1x𝑒C𝑒B=1𝑒B
24 2 adantr φxC𝑒x=1B*
25 xmulass x*C*B*x𝑒C𝑒B=x𝑒C𝑒B
26 9 11 24 25 syl3anc φxC𝑒x=1x𝑒C𝑒B=x𝑒C𝑒B
27 xmullid B*1𝑒B=B
28 24 27 syl φxC𝑒x=11𝑒B=B
29 23 26 28 3eqtr3d φxC𝑒x=1x𝑒C𝑒B=B
30 22 29 eqeq12d φxC𝑒x=1x𝑒C𝑒A=x𝑒C𝑒BA=B
31 7 30 imbitrid φxC𝑒x=1C𝑒A=C𝑒BA=B
32 6 31 rexlimddv φC𝑒A=C𝑒BA=B
33 oveq2 A=BC𝑒A=C𝑒B
34 32 33 impbid1 φC𝑒A=C𝑒BA=B