Description: Cancellation law for extended multiplication. (Contributed by Thierry Arnoux, 17-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xmulcand.1 | |
|
xmulcand.2 | |
||
xmulcand.3 | |
||
xmulcand.4 | |
||
Assertion | xmulcand | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmulcand.1 | |
|
2 | xmulcand.2 | |
|
3 | xmulcand.3 | |
|
4 | xmulcand.4 | |
|
5 | xrecex | |
|
6 | 3 4 5 | syl2anc | |
7 | oveq2 | |
|
8 | simprl | |
|
9 | 8 | rexrd | |
10 | 3 | adantr | |
11 | 10 | rexrd | |
12 | xmulcom | |
|
13 | 9 11 12 | syl2anc | |
14 | simprr | |
|
15 | 13 14 | eqtrd | |
16 | 15 | oveq1d | |
17 | 1 | adantr | |
18 | xmulass | |
|
19 | 9 11 17 18 | syl3anc | |
20 | xmullid | |
|
21 | 17 20 | syl | |
22 | 16 19 21 | 3eqtr3d | |
23 | 15 | oveq1d | |
24 | 2 | adantr | |
25 | xmulass | |
|
26 | 9 11 24 25 | syl3anc | |
27 | xmullid | |
|
28 | 24 27 | syl | |
29 | 23 26 28 | 3eqtr3d | |
30 | 22 29 | eqeq12d | |
31 | 7 30 | imbitrid | |
32 | 6 31 | rexlimddv | |
33 | oveq2 | |
|
34 | 32 33 | impbid1 | |