Metamath Proof Explorer


Theorem xmulcand

Description: Cancellation law for extended multiplication. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Hypotheses xmulcand.1 φ A *
xmulcand.2 φ B *
xmulcand.3 φ C
xmulcand.4 φ C 0
Assertion xmulcand φ C 𝑒 A = C 𝑒 B A = B

Proof

Step Hyp Ref Expression
1 xmulcand.1 φ A *
2 xmulcand.2 φ B *
3 xmulcand.3 φ C
4 xmulcand.4 φ C 0
5 xrecex C C 0 x C 𝑒 x = 1
6 3 4 5 syl2anc φ x C 𝑒 x = 1
7 oveq2 C 𝑒 A = C 𝑒 B x 𝑒 C 𝑒 A = x 𝑒 C 𝑒 B
8 simprl φ x C 𝑒 x = 1 x
9 8 rexrd φ x C 𝑒 x = 1 x *
10 3 adantr φ x C 𝑒 x = 1 C
11 10 rexrd φ x C 𝑒 x = 1 C *
12 xmulcom x * C * x 𝑒 C = C 𝑒 x
13 9 11 12 syl2anc φ x C 𝑒 x = 1 x 𝑒 C = C 𝑒 x
14 simprr φ x C 𝑒 x = 1 C 𝑒 x = 1
15 13 14 eqtrd φ x C 𝑒 x = 1 x 𝑒 C = 1
16 15 oveq1d φ x C 𝑒 x = 1 x 𝑒 C 𝑒 A = 1 𝑒 A
17 1 adantr φ x C 𝑒 x = 1 A *
18 xmulass x * C * A * x 𝑒 C 𝑒 A = x 𝑒 C 𝑒 A
19 9 11 17 18 syl3anc φ x C 𝑒 x = 1 x 𝑒 C 𝑒 A = x 𝑒 C 𝑒 A
20 xmulid2 A * 1 𝑒 A = A
21 17 20 syl φ x C 𝑒 x = 1 1 𝑒 A = A
22 16 19 21 3eqtr3d φ x C 𝑒 x = 1 x 𝑒 C 𝑒 A = A
23 15 oveq1d φ x C 𝑒 x = 1 x 𝑒 C 𝑒 B = 1 𝑒 B
24 2 adantr φ x C 𝑒 x = 1 B *
25 xmulass x * C * B * x 𝑒 C 𝑒 B = x 𝑒 C 𝑒 B
26 9 11 24 25 syl3anc φ x C 𝑒 x = 1 x 𝑒 C 𝑒 B = x 𝑒 C 𝑒 B
27 xmulid2 B * 1 𝑒 B = B
28 24 27 syl φ x C 𝑒 x = 1 1 𝑒 B = B
29 23 26 28 3eqtr3d φ x C 𝑒 x = 1 x 𝑒 C 𝑒 B = B
30 22 29 eqeq12d φ x C 𝑒 x = 1 x 𝑒 C 𝑒 A = x 𝑒 C 𝑒 B A = B
31 7 30 syl5ib φ x C 𝑒 x = 1 C 𝑒 A = C 𝑒 B A = B
32 6 31 rexlimddv φ C 𝑒 A = C 𝑒 B A = B
33 oveq2 A = B C 𝑒 A = C 𝑒 B
34 32 33 impbid1 φ C 𝑒 A = C 𝑒 B A = B