| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmulgt0 |
|
| 2 |
1
|
an4s |
|
| 3 |
|
0xr |
|
| 4 |
|
xmulcl |
|
| 5 |
4
|
adantr |
|
| 6 |
|
xrltle |
|
| 7 |
3 5 6
|
sylancr |
|
| 8 |
2 7
|
mpd |
|
| 9 |
8
|
ex |
|
| 10 |
9
|
ad2ant2r |
|
| 11 |
10
|
impl |
|
| 12 |
|
0le0 |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
eqcomd |
|
| 15 |
|
xmul01 |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
14 16
|
sylan9eqr |
|
| 18 |
12 17
|
breqtrrid |
|
| 19 |
18
|
adantlr |
|
| 20 |
|
xrleloe |
|
| 21 |
3 20
|
mpan |
|
| 22 |
21
|
biimpa |
|
| 23 |
22
|
ad2antlr |
|
| 24 |
11 19 23
|
mpjaodan |
|
| 25 |
|
oveq1 |
|
| 26 |
25
|
eqcomd |
|
| 27 |
|
xmul02 |
|
| 28 |
27
|
ad2antrl |
|
| 29 |
26 28
|
sylan9eqr |
|
| 30 |
12 29
|
breqtrrid |
|
| 31 |
|
xrleloe |
|
| 32 |
3 31
|
mpan |
|
| 33 |
32
|
biimpa |
|
| 34 |
33
|
adantr |
|
| 35 |
24 30 34
|
mpjaodan |
|