Metamath Proof Explorer


Theorem xpassen

Description: Associative law for equinumerosity of Cartesian product. Proposition 4.22(e) of Mendelson p. 254. (Contributed by NM, 22-Jan-2004) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses xpassen.1 AV
xpassen.2 BV
xpassen.3 CV
Assertion xpassen A×B×CA×B×C

Proof

Step Hyp Ref Expression
1 xpassen.1 AV
2 xpassen.2 BV
3 xpassen.3 CV
4 1 2 xpex A×BV
5 4 3 xpex A×B×CV
6 2 3 xpex B×CV
7 1 6 xpex A×B×CV
8 opex domdomxrandomxranxV
9 8 a1i xA×B×CdomdomxrandomxranxV
10 opex domydomranyranranyV
11 10 a1i yA×B×CdomydomranyranranyV
12 sneq x=zwvx=zwv
13 12 dmeqd x=zwvdomx=domzwv
14 13 unieqd x=zwvdomx=domzwv
15 14 sneqd x=zwvdomx=domzwv
16 15 dmeqd x=zwvdomdomx=domdomzwv
17 16 unieqd x=zwvdomdomx=domdomzwv
18 opex zwV
19 vex vV
20 18 19 op1sta domzwv=zw
21 20 sneqi domzwv=zw
22 21 dmeqi domdomzwv=domzw
23 22 unieqi domdomzwv=domzw
24 vex zV
25 vex wV
26 24 25 op1sta domzw=z
27 23 26 eqtri domdomzwv=z
28 17 27 eqtr2di x=zwvz=domdomx
29 15 rneqd x=zwvrandomx=randomzwv
30 29 unieqd x=zwvrandomx=randomzwv
31 21 rneqi randomzwv=ranzw
32 31 unieqi randomzwv=ranzw
33 24 25 op2nda ranzw=w
34 32 33 eqtri randomzwv=w
35 30 34 eqtr2di x=zwvw=randomx
36 12 rneqd x=zwvranx=ranzwv
37 36 unieqd x=zwvranx=ranzwv
38 18 19 op2nda ranzwv=v
39 37 38 eqtr2di x=zwvv=ranx
40 35 39 opeq12d x=zwvwv=randomxranx
41 28 40 opeq12d x=zwvzwv=domdomxrandomxranx
42 sneq y=zwvy=zwv
43 42 dmeqd y=zwvdomy=domzwv
44 43 unieqd y=zwvdomy=domzwv
45 opex wvV
46 24 45 op1sta domzwv=z
47 44 46 eqtr2di y=zwvz=domy
48 42 rneqd y=zwvrany=ranzwv
49 48 unieqd y=zwvrany=ranzwv
50 49 sneqd y=zwvrany=ranzwv
51 50 dmeqd y=zwvdomrany=domranzwv
52 51 unieqd y=zwvdomrany=domranzwv
53 24 45 op2nda ranzwv=wv
54 53 sneqi ranzwv=wv
55 54 dmeqi domranzwv=domwv
56 55 unieqi domranzwv=domwv
57 25 19 op1sta domwv=w
58 56 57 eqtri domranzwv=w
59 52 58 eqtr2di y=zwvw=domrany
60 47 59 opeq12d y=zwvzw=domydomrany
61 50 rneqd y=zwvranrany=ranranzwv
62 61 unieqd y=zwvranrany=ranranzwv
63 54 rneqi ranranzwv=ranwv
64 63 unieqi ranranzwv=ranwv
65 25 19 op2nda ranwv=v
66 64 65 eqtri ranranzwv=v
67 62 66 eqtr2di y=zwvv=ranrany
68 60 67 opeq12d y=zwvzwv=domydomranyranrany
69 41 68 eq2tri x=zwvy=domdomxrandomxranxy=zwvx=domydomranyranrany
70 anass zAwBvCzAwBvC
71 69 70 anbi12i x=zwvy=domdomxrandomxranxzAwBvCy=zwvx=domydomranyranranyzAwBvC
72 an32 x=zwvzAwBvCy=domdomxrandomxranxx=zwvy=domdomxrandomxranxzAwBvC
73 an32 y=zwvzAwBvCx=domydomranyranranyy=zwvx=domydomranyranranyzAwBvC
74 71 72 73 3bitr4i x=zwvzAwBvCy=domdomxrandomxranxy=zwvzAwBvCx=domydomranyranrany
75 74 exbii vx=zwvzAwBvCy=domdomxrandomxranxvy=zwvzAwBvCx=domydomranyranrany
76 19.41v vx=zwvzAwBvCy=domdomxrandomxranxvx=zwvzAwBvCy=domdomxrandomxranx
77 19.41v vy=zwvzAwBvCx=domydomranyranranyvy=zwvzAwBvCx=domydomranyranrany
78 75 76 77 3bitr3i vx=zwvzAwBvCy=domdomxrandomxranxvy=zwvzAwBvCx=domydomranyranrany
79 78 2exbii zwvx=zwvzAwBvCy=domdomxrandomxranxzwvy=zwvzAwBvCx=domydomranyranrany
80 19.41vv zwvx=zwvzAwBvCy=domdomxrandomxranxzwvx=zwvzAwBvCy=domdomxrandomxranx
81 19.41vv zwvy=zwvzAwBvCx=domydomranyranranyzwvy=zwvzAwBvCx=domydomranyranrany
82 79 80 81 3bitr3i zwvx=zwvzAwBvCy=domdomxrandomxranxzwvy=zwvzAwBvCx=domydomranyranrany
83 elxp xA×B×Cuvx=uvuA×BvC
84 excom uvx=uvuA×BvCvux=uvuA×BvC
85 elxp uA×Bzwu=zwzAwB
86 85 anbi1i uA×Bx=uvvCzwu=zwzAwBx=uvvC
87 an12 x=uvuA×BvCuA×Bx=uvvC
88 19.41vv zwu=zwzAwBx=uvvCzwu=zwzAwBx=uvvC
89 86 87 88 3bitr4i x=uvuA×BvCzwu=zwzAwBx=uvvC
90 89 2exbii vux=uvuA×BvCvuzwu=zwzAwBx=uvvC
91 exrot4 vuzwu=zwzAwBx=uvvCzwvuu=zwzAwBx=uvvC
92 anass u=zwzAwBx=uvvCu=zwzAwBx=uvvC
93 92 exbii uu=zwzAwBx=uvvCuu=zwzAwBx=uvvC
94 opeq1 u=zwuv=zwv
95 94 eqeq2d u=zwx=uvx=zwv
96 95 anbi1d u=zwx=uvvCx=zwvvC
97 96 anbi2d u=zwzAwBx=uvvCzAwBx=zwvvC
98 18 97 ceqsexv uu=zwzAwBx=uvvCzAwBx=zwvvC
99 an12 zAwBx=zwvvCx=zwvzAwBvC
100 93 98 99 3bitri uu=zwzAwBx=uvvCx=zwvzAwBvC
101 100 3exbii zwvuu=zwzAwBx=uvvCzwvx=zwvzAwBvC
102 90 91 101 3bitri vux=uvuA×BvCzwvx=zwvzAwBvC
103 83 84 102 3bitri xA×B×Czwvx=zwvzAwBvC
104 103 anbi1i xA×B×Cy=domdomxrandomxranxzwvx=zwvzAwBvCy=domdomxrandomxranx
105 elxp yA×B×Czuy=zuzAuB×C
106 elxp uB×Cwvu=wvwBvC
107 106 anbi2i y=zuzAuB×Cy=zuzAwvu=wvwBvC
108 anass y=zuzAuB×Cy=zuzAuB×C
109 19.42vv wvy=zuzAu=wvwBvCy=zuzAwvu=wvwBvC
110 an12 y=zuzAu=wvwBvCu=wvy=zuzAwBvC
111 anass y=zuzAwBvCy=zuzAwBvC
112 111 anbi2i u=wvy=zuzAwBvCu=wvy=zuzAwBvC
113 110 112 bitri y=zuzAu=wvwBvCu=wvy=zuzAwBvC
114 113 2exbii wvy=zuzAu=wvwBvCwvu=wvy=zuzAwBvC
115 109 114 bitr3i y=zuzAwvu=wvwBvCwvu=wvy=zuzAwBvC
116 107 108 115 3bitr3i y=zuzAuB×Cwvu=wvy=zuzAwBvC
117 116 exbii uy=zuzAuB×Cuwvu=wvy=zuzAwBvC
118 exrot3 uwvu=wvy=zuzAwBvCwvuu=wvy=zuzAwBvC
119 opeq2 u=wvzu=zwv
120 119 eqeq2d u=wvy=zuy=zwv
121 120 anbi1d u=wvy=zuzAwBvCy=zwvzAwBvC
122 45 121 ceqsexv uu=wvy=zuzAwBvCy=zwvzAwBvC
123 122 2exbii wvuu=wvy=zuzAwBvCwvy=zwvzAwBvC
124 117 118 123 3bitri uy=zuzAuB×Cwvy=zwvzAwBvC
125 124 exbii zuy=zuzAuB×Czwvy=zwvzAwBvC
126 105 125 bitri yA×B×Czwvy=zwvzAwBvC
127 126 anbi1i yA×B×Cx=domydomranyranranyzwvy=zwvzAwBvCx=domydomranyranrany
128 82 104 127 3bitr4i xA×B×Cy=domdomxrandomxranxyA×B×Cx=domydomranyranrany
129 5 7 9 11 128 en2i A×B×CA×B×C