Metamath Proof Explorer


Theorem xpcan

Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011)

Ref Expression
Assertion xpcan CC×A=C×BA=B

Proof

Step Hyp Ref Expression
1 xp11 CAC×A=C×BC=CA=B
2 eqid C=C
3 2 biantrur A=BC=CA=B
4 1 3 bitr4di CAC×A=C×BA=B
5 nne ¬AA=
6 simpr CA=A=
7 xpeq2 A=C×A=C×
8 xp0 C×=
9 7 8 eqtrdi A=C×A=
10 9 eqeq1d A=C×A=C×B=C×B
11 eqcom =C×BC×B=
12 10 11 bitrdi A=C×A=C×BC×B=
13 12 adantl CA=C×A=C×BC×B=
14 df-ne C¬C=
15 xpeq0 C×B=C=B=
16 orel1 ¬C=C=B=B=
17 15 16 biimtrid ¬C=C×B=B=
18 14 17 sylbi CC×B=B=
19 18 adantr CA=C×B=B=
20 13 19 sylbid CA=C×A=C×BB=
21 eqtr3 A=B=A=B
22 6 20 21 syl6an CA=C×A=C×BA=B
23 5 22 sylan2b C¬AC×A=C×BA=B
24 xpeq2 A=BC×A=C×B
25 23 24 impbid1 C¬AC×A=C×BA=B
26 4 25 pm2.61dan CC×A=C×BA=B