Metamath Proof Explorer


Theorem xpinpreima2

Description: Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd , the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017)

Ref Expression
Assertion xpinpreima2 AEBFA×B=1stE×F-1A2ndE×F-1B

Proof

Step Hyp Ref Expression
1 xp2 A×B=rV×V|1strA2ndrB
2 xpss E×FV×V
3 rabss2 E×FV×VrE×F|1strA2ndrBrV×V|1strA2ndrB
4 2 3 mp1i AEBFrE×F|1strA2ndrBrV×V|1strA2ndrB
5 simprl AEBFrV×V1strA2ndrBrV×V
6 simpll AEBFrV×V1strA2ndrBAE
7 simprrl AEBFrV×V1strA2ndrB1strA
8 6 7 sseldd AEBFrV×V1strA2ndrB1strE
9 simplr AEBFrV×V1strA2ndrBBF
10 simprrr AEBFrV×V1strA2ndrB2ndrB
11 9 10 sseldd AEBFrV×V1strA2ndrB2ndrF
12 8 11 jca AEBFrV×V1strA2ndrB1strE2ndrF
13 elxp7 rE×FrV×V1strE2ndrF
14 5 12 13 sylanbrc AEBFrV×V1strA2ndrBrE×F
15 14 rabss3d AEBFrV×V|1strA2ndrBrE×F|1strA2ndrB
16 4 15 eqssd AEBFrE×F|1strA2ndrB=rV×V|1strA2ndrB
17 1 16 eqtr4id AEBFA×B=rE×F|1strA2ndrB
18 inrab rE×F|1strArE×F|2ndrB=rE×F|1strA2ndrB
19 17 18 eqtr4di AEBFA×B=rE×F|1strArE×F|2ndrB
20 f1stres 1stE×F:E×FE
21 ffn 1stE×F:E×FE1stE×FFnE×F
22 fncnvima2 1stE×FFnE×F1stE×F-1A=rE×F|1stE×FrA
23 20 21 22 mp2b 1stE×F-1A=rE×F|1stE×FrA
24 fvres rE×F1stE×Fr=1str
25 24 eleq1d rE×F1stE×FrA1strA
26 25 rabbiia rE×F|1stE×FrA=rE×F|1strA
27 23 26 eqtri 1stE×F-1A=rE×F|1strA
28 f2ndres 2ndE×F:E×FF
29 ffn 2ndE×F:E×FF2ndE×FFnE×F
30 fncnvima2 2ndE×FFnE×F2ndE×F-1B=rE×F|2ndE×FrB
31 28 29 30 mp2b 2ndE×F-1B=rE×F|2ndE×FrB
32 fvres rE×F2ndE×Fr=2ndr
33 32 eleq1d rE×F2ndE×FrB2ndrB
34 33 rabbiia rE×F|2ndE×FrB=rE×F|2ndrB
35 31 34 eqtri 2ndE×F-1B=rE×F|2ndrB
36 27 35 ineq12i 1stE×F-1A2ndE×F-1B=rE×F|1strArE×F|2ndrB
37 19 36 eqtr4di AEBFA×B=1stE×F-1A2ndE×F-1B