Metamath Proof Explorer


Theorem xpsff1o

Description: The function appearing in xpsval is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = { (/) , 1o } . (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypothesis xpsff1o.f F=xA,yBx1𝑜y
Assertion xpsff1o F:A×B1-1 ontok2𝑜ifk=AB

Proof

Step Hyp Ref Expression
1 xpsff1o.f F=xA,yBx1𝑜y
2 xpsfrnel2 x1𝑜yk2𝑜ifk=ABxAyB
3 2 biimpri xAyBx1𝑜yk2𝑜ifk=AB
4 3 rgen2 xAyBx1𝑜yk2𝑜ifk=AB
5 1 fmpo xAyBx1𝑜yk2𝑜ifk=ABF:A×Bk2𝑜ifk=AB
6 4 5 mpbi F:A×Bk2𝑜ifk=AB
7 1st2nd2 zA×Bz=1stz2ndz
8 7 fveq2d zA×BFz=F1stz2ndz
9 df-ov 1stzF2ndz=F1stz2ndz
10 xp1st zA×B1stzA
11 xp2nd zA×B2ndzB
12 1 xpsfval 1stzA2ndzB1stzF2ndz=1stz1𝑜2ndz
13 10 11 12 syl2anc zA×B1stzF2ndz=1stz1𝑜2ndz
14 9 13 eqtr3id zA×BF1stz2ndz=1stz1𝑜2ndz
15 8 14 eqtrd zA×BFz=1stz1𝑜2ndz
16 1st2nd2 wA×Bw=1stw2ndw
17 16 fveq2d wA×BFw=F1stw2ndw
18 df-ov 1stwF2ndw=F1stw2ndw
19 xp1st wA×B1stwA
20 xp2nd wA×B2ndwB
21 1 xpsfval 1stwA2ndwB1stwF2ndw=1stw1𝑜2ndw
22 19 20 21 syl2anc wA×B1stwF2ndw=1stw1𝑜2ndw
23 18 22 eqtr3id wA×BF1stw2ndw=1stw1𝑜2ndw
24 17 23 eqtrd wA×BFw=1stw1𝑜2ndw
25 15 24 eqeqan12d zA×BwA×BFz=Fw1stz1𝑜2ndz=1stw1𝑜2ndw
26 fveq1 1stz1𝑜2ndz=1stw1𝑜2ndw1stz1𝑜2ndz=1stw1𝑜2ndw
27 fvex 1stzV
28 fvpr0o 1stzV1stz1𝑜2ndz=1stz
29 27 28 ax-mp 1stz1𝑜2ndz=1stz
30 fvex 1stwV
31 fvpr0o 1stwV1stw1𝑜2ndw=1stw
32 30 31 ax-mp 1stw1𝑜2ndw=1stw
33 26 29 32 3eqtr3g 1stz1𝑜2ndz=1stw1𝑜2ndw1stz=1stw
34 fveq1 1stz1𝑜2ndz=1stw1𝑜2ndw1stz1𝑜2ndz1𝑜=1stw1𝑜2ndw1𝑜
35 fvex 2ndzV
36 fvpr1o 2ndzV1stz1𝑜2ndz1𝑜=2ndz
37 35 36 ax-mp 1stz1𝑜2ndz1𝑜=2ndz
38 fvex 2ndwV
39 fvpr1o 2ndwV1stw1𝑜2ndw1𝑜=2ndw
40 38 39 ax-mp 1stw1𝑜2ndw1𝑜=2ndw
41 34 37 40 3eqtr3g 1stz1𝑜2ndz=1stw1𝑜2ndw2ndz=2ndw
42 33 41 opeq12d 1stz1𝑜2ndz=1stw1𝑜2ndw1stz2ndz=1stw2ndw
43 7 16 eqeqan12d zA×BwA×Bz=w1stz2ndz=1stw2ndw
44 42 43 imbitrrid zA×BwA×B1stz1𝑜2ndz=1stw1𝑜2ndwz=w
45 25 44 sylbid zA×BwA×BFz=Fwz=w
46 45 rgen2 zA×BwA×BFz=Fwz=w
47 dff13 F:A×B1-1k2𝑜ifk=ABF:A×Bk2𝑜ifk=ABzA×BwA×BFz=Fwz=w
48 6 46 47 mpbir2an F:A×B1-1k2𝑜ifk=AB
49 xpsfrnel zk2𝑜ifk=ABzFn2𝑜zAz1𝑜B
50 49 simp2bi zk2𝑜ifk=ABzA
51 49 simp3bi zk2𝑜ifk=ABz1𝑜B
52 1 xpsfval zAz1𝑜BzFz1𝑜=z1𝑜z1𝑜
53 50 51 52 syl2anc zk2𝑜ifk=ABzFz1𝑜=z1𝑜z1𝑜
54 ixpfn zk2𝑜ifk=ABzFn2𝑜
55 xpsfeq zFn2𝑜z1𝑜z1𝑜=z
56 54 55 syl zk2𝑜ifk=ABz1𝑜z1𝑜=z
57 53 56 eqtr2d zk2𝑜ifk=ABz=zFz1𝑜
58 rspceov zAz1𝑜Bz=zFz1𝑜aAbBz=aFb
59 50 51 57 58 syl3anc zk2𝑜ifk=ABaAbBz=aFb
60 59 rgen zk2𝑜ifk=ABaAbBz=aFb
61 foov F:A×Bontok2𝑜ifk=ABF:A×Bk2𝑜ifk=ABzk2𝑜ifk=ABaAbBz=aFb
62 6 60 61 mpbir2an F:A×Bontok2𝑜ifk=AB
63 df-f1o F:A×B1-1 ontok2𝑜ifk=ABF:A×B1-1k2𝑜ifk=ABF:A×Bontok2𝑜ifk=AB
64 48 62 63 mpbir2an F:A×B1-1 ontok2𝑜ifk=AB