Metamath Proof Explorer


Theorem xrge0npcan

Description: Extended nonnegative real version of npcan . (Contributed by Thierry Arnoux, 9-Jun-2017)

Ref Expression
Assertion xrge0npcan A0+∞B0+∞BAA+𝑒B+𝑒B=A

Proof

Step Hyp Ref Expression
1 iccssxr 0+∞*
2 simpl1 A0+∞B0+∞BAB=+∞A0+∞
3 1 2 sselid A0+∞B0+∞BAB=+∞A*
4 simpr A0+∞B0+∞BAB=+∞B=+∞
5 simpl3 A0+∞B0+∞BAB=+∞BA
6 4 5 eqbrtrrd A0+∞B0+∞BAB=+∞+∞A
7 xgepnf A*+∞AA=+∞
8 7 biimpa A*+∞AA=+∞
9 3 6 8 syl2anc A0+∞B0+∞BAB=+∞A=+∞
10 xnegeq B=+∞B=+∞
11 4 10 syl A0+∞B0+∞BAB=+∞B=+∞
12 9 11 oveq12d A0+∞B0+∞BAB=+∞A+𝑒B=+∞+𝑒+∞
13 pnfxr +∞*
14 xnegid +∞*+∞+𝑒+∞=0
15 13 14 ax-mp +∞+𝑒+∞=0
16 12 15 eqtrdi A0+∞B0+∞BAB=+∞A+𝑒B=0
17 16 oveq1d A0+∞B0+∞BAB=+∞A+𝑒B+𝑒B=0+𝑒B
18 4 oveq2d A0+∞B0+∞BAB=+∞0+𝑒B=0+𝑒+∞
19 xaddlid +∞*0+𝑒+∞=+∞
20 13 19 mp1i A0+∞B0+∞BAB=+∞0+𝑒+∞=+∞
21 17 18 20 3eqtrd A0+∞B0+∞BAB=+∞A+𝑒B+𝑒B=+∞
22 21 9 eqtr4d A0+∞B0+∞BAB=+∞A+𝑒B+𝑒B=A
23 simpl1 A0+∞B0+∞BA¬B=+∞A0+∞
24 1 23 sselid A0+∞B0+∞BA¬B=+∞A*
25 xrge0neqmnf A0+∞A−∞
26 23 25 syl A0+∞B0+∞BA¬B=+∞A−∞
27 simpl2 A0+∞B0+∞BA¬B=+∞B0+∞
28 1 27 sselid A0+∞B0+∞BA¬B=+∞B*
29 28 xnegcld A0+∞B0+∞BA¬B=+∞B*
30 simpr A0+∞B0+∞BA¬B=+∞¬B=+∞
31 xnegneg B*B=B
32 xnegeq B=−∞B=−∞
33 31 32 sylan9req B*B=−∞B=−∞
34 xnegmnf −∞=+∞
35 33 34 eqtrdi B*B=−∞B=+∞
36 35 stoic1a B*¬B=+∞¬B=−∞
37 36 neqned B*¬B=+∞B−∞
38 28 30 37 syl2anc A0+∞B0+∞BA¬B=+∞B−∞
39 xrge0neqmnf B0+∞B−∞
40 27 39 syl A0+∞B0+∞BA¬B=+∞B−∞
41 xaddass A*A−∞B*B−∞B*B−∞A+𝑒B+𝑒B=A+𝑒B+𝑒B
42 24 26 29 38 28 40 41 syl222anc A0+∞B0+∞BA¬B=+∞A+𝑒B+𝑒B=A+𝑒B+𝑒B
43 xnegcl B*B*
44 xaddcom B*B*B+𝑒B=B+𝑒B
45 43 44 mpancom B*B+𝑒B=B+𝑒B
46 xnegid B*B+𝑒B=0
47 45 46 eqtrd B*B+𝑒B=0
48 47 oveq2d B*A+𝑒B+𝑒B=A+𝑒0
49 xaddrid A*A+𝑒0=A
50 48 49 sylan9eqr A*B*A+𝑒B+𝑒B=A
51 24 28 50 syl2anc A0+∞B0+∞BA¬B=+∞A+𝑒B+𝑒B=A
52 42 51 eqtrd A0+∞B0+∞BA¬B=+∞A+𝑒B+𝑒B=A
53 22 52 pm2.61dan A0+∞B0+∞BAA+𝑒B+𝑒B=A