Description: Extended nonnegative real version of npcan . (Contributed by Thierry Arnoux, 9-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | xrge0npcan | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr | |
|
2 | simpl1 | |
|
3 | 1 2 | sselid | |
4 | simpr | |
|
5 | simpl3 | |
|
6 | 4 5 | eqbrtrrd | |
7 | xgepnf | |
|
8 | 7 | biimpa | |
9 | 3 6 8 | syl2anc | |
10 | xnegeq | |
|
11 | 4 10 | syl | |
12 | 9 11 | oveq12d | |
13 | pnfxr | |
|
14 | xnegid | |
|
15 | 13 14 | ax-mp | |
16 | 12 15 | eqtrdi | |
17 | 16 | oveq1d | |
18 | 4 | oveq2d | |
19 | xaddlid | |
|
20 | 13 19 | mp1i | |
21 | 17 18 20 | 3eqtrd | |
22 | 21 9 | eqtr4d | |
23 | simpl1 | |
|
24 | 1 23 | sselid | |
25 | xrge0neqmnf | |
|
26 | 23 25 | syl | |
27 | simpl2 | |
|
28 | 1 27 | sselid | |
29 | 28 | xnegcld | |
30 | simpr | |
|
31 | xnegneg | |
|
32 | xnegeq | |
|
33 | 31 32 | sylan9req | |
34 | xnegmnf | |
|
35 | 33 34 | eqtrdi | |
36 | 35 | stoic1a | |
37 | 36 | neqned | |
38 | 28 30 37 | syl2anc | |
39 | xrge0neqmnf | |
|
40 | 27 39 | syl | |
41 | xaddass | |
|
42 | 24 26 29 38 28 40 41 | syl222anc | |
43 | xnegcl | |
|
44 | xaddcom | |
|
45 | 43 44 | mpancom | |
46 | xnegid | |
|
47 | 45 46 | eqtrd | |
48 | 47 | oveq2d | |
49 | xaddrid | |
|
50 | 48 49 | sylan9eqr | |
51 | 24 28 50 | syl2anc | |
52 | 42 51 | eqtrd | |
53 | 22 52 | pm2.61dan | |