| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccssxr |  | 
						
							| 2 |  | simpl1 |  | 
						
							| 3 | 1 2 | sselid |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 |  | simpl3 |  | 
						
							| 6 | 4 5 | eqbrtrrd |  | 
						
							| 7 |  | xgepnf |  | 
						
							| 8 | 7 | biimpa |  | 
						
							| 9 | 3 6 8 | syl2anc |  | 
						
							| 10 |  | xnegeq |  | 
						
							| 11 | 4 10 | syl |  | 
						
							| 12 | 9 11 | oveq12d |  | 
						
							| 13 |  | pnfxr |  | 
						
							| 14 |  | xnegid |  | 
						
							| 15 | 13 14 | ax-mp |  | 
						
							| 16 | 12 15 | eqtrdi |  | 
						
							| 17 | 16 | oveq1d |  | 
						
							| 18 | 4 | oveq2d |  | 
						
							| 19 |  | xaddlid |  | 
						
							| 20 | 13 19 | mp1i |  | 
						
							| 21 | 17 18 20 | 3eqtrd |  | 
						
							| 22 | 21 9 | eqtr4d |  | 
						
							| 23 |  | simpl1 |  | 
						
							| 24 | 1 23 | sselid |  | 
						
							| 25 |  | xrge0neqmnf |  | 
						
							| 26 | 23 25 | syl |  | 
						
							| 27 |  | simpl2 |  | 
						
							| 28 | 1 27 | sselid |  | 
						
							| 29 | 28 | xnegcld |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 |  | xnegneg |  | 
						
							| 32 |  | xnegeq |  | 
						
							| 33 | 31 32 | sylan9req |  | 
						
							| 34 |  | xnegmnf |  | 
						
							| 35 | 33 34 | eqtrdi |  | 
						
							| 36 | 35 | stoic1a |  | 
						
							| 37 | 36 | neqned |  | 
						
							| 38 | 28 30 37 | syl2anc |  | 
						
							| 39 |  | xrge0neqmnf |  | 
						
							| 40 | 27 39 | syl |  | 
						
							| 41 |  | xaddass |  | 
						
							| 42 | 24 26 29 38 28 40 41 | syl222anc |  | 
						
							| 43 |  | xnegcl |  | 
						
							| 44 |  | xaddcom |  | 
						
							| 45 | 43 44 | mpancom |  | 
						
							| 46 |  | xnegid |  | 
						
							| 47 | 45 46 | eqtrd |  | 
						
							| 48 | 47 | oveq2d |  | 
						
							| 49 |  | xaddrid |  | 
						
							| 50 | 48 49 | sylan9eqr |  | 
						
							| 51 | 24 28 50 | syl2anc |  | 
						
							| 52 | 42 51 | eqtrd |  | 
						
							| 53 | 22 52 | pm2.61dan |  |