Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrralrecnnle.n | |
|
xrralrecnnle.a | |
||
xrralrecnnle.b | |
||
Assertion | xrralrecnnle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrralrecnnle.n | |
|
2 | xrralrecnnle.a | |
|
3 | xrralrecnnle.b | |
|
4 | nfv | |
|
5 | 1 4 | nfan | |
6 | 2 | ad2antrr | |
7 | 3 | adantr | |
8 | nnrecre | |
|
9 | 8 | adantl | |
10 | 7 9 | readdcld | |
11 | 10 | rexrd | |
12 | 11 | adantlr | |
13 | rexr | |
|
14 | 3 13 | syl | |
15 | 14 | ad2antrr | |
16 | simplr | |
|
17 | nnrp | |
|
18 | rpreccl | |
|
19 | 17 18 | syl | |
20 | 19 | adantl | |
21 | 7 20 | ltaddrpd | |
22 | 21 | adantlr | |
23 | 6 15 12 16 22 | xrlelttrd | |
24 | 6 12 23 | xrltled | |
25 | 24 | ex | |
26 | 5 25 | ralrimi | |
27 | 26 | ex | |
28 | rpgtrecnn | |
|
29 | 28 | adantl | |
30 | nfra1 | |
|
31 | 1 30 | nfan | |
32 | nfv | |
|
33 | 31 32 | nfan | |
34 | nfv | |
|
35 | simpll | |
|
36 | rspa | |
|
37 | 36 | adantll | |
38 | 35 37 | jca | |
39 | 38 | adantlr | |
40 | simplr | |
|
41 | simpr | |
|
42 | 2 | ad4antr | |
43 | 3 | adantr | |
44 | rpre | |
|
45 | 44 | adantl | |
46 | 43 45 | readdcld | |
47 | 46 | rexrd | |
48 | 47 | ad5ant13 | |
49 | 11 | ad5ant14 | |
50 | simp-4r | |
|
51 | 8 | ad2antlr | |
52 | 45 | ad2antrr | |
53 | 43 | ad2antrr | |
54 | simpr | |
|
55 | 51 52 53 54 | ltadd2dd | |
56 | 55 | adantl3r | |
57 | 42 49 48 50 56 | xrlelttrd | |
58 | 42 48 57 | xrltled | |
59 | 58 | ex | |
60 | 39 40 41 59 | syl21anc | |
61 | 60 | ex | |
62 | 33 34 61 | rexlimd | |
63 | 29 62 | mpd | |
64 | 63 | ralrimiva | |
65 | xralrple | |
|
66 | 2 3 65 | syl2anc | |
67 | 66 | adantr | |
68 | 64 67 | mpbird | |
69 | 68 | ex | |
70 | 27 69 | impbid | |