Metamath Proof Explorer


Theorem xrralrecnnle

Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses xrralrecnnle.n nφ
xrralrecnnle.a φA*
xrralrecnnle.b φB
Assertion xrralrecnnle φABnAB+1n

Proof

Step Hyp Ref Expression
1 xrralrecnnle.n nφ
2 xrralrecnnle.a φA*
3 xrralrecnnle.b φB
4 nfv nAB
5 1 4 nfan nφAB
6 2 ad2antrr φABnA*
7 3 adantr φnB
8 nnrecre n1n
9 8 adantl φn1n
10 7 9 readdcld φnB+1n
11 10 rexrd φnB+1n*
12 11 adantlr φABnB+1n*
13 rexr BB*
14 3 13 syl φB*
15 14 ad2antrr φABnB*
16 simplr φABnAB
17 nnrp nn+
18 rpreccl n+1n+
19 17 18 syl n1n+
20 19 adantl φn1n+
21 7 20 ltaddrpd φnB<B+1n
22 21 adantlr φABnB<B+1n
23 6 15 12 16 22 xrlelttrd φABnA<B+1n
24 6 12 23 xrltled φABnAB+1n
25 24 ex φABnAB+1n
26 5 25 ralrimi φABnAB+1n
27 26 ex φABnAB+1n
28 rpgtrecnn x+n1n<x
29 28 adantl φnAB+1nx+n1n<x
30 nfra1 nnAB+1n
31 1 30 nfan nφnAB+1n
32 nfv nx+
33 31 32 nfan nφnAB+1nx+
34 nfv nAB+x
35 simpll φnAB+1nnφ
36 rspa nAB+1nnAB+1n
37 36 adantll φnAB+1nnAB+1n
38 35 37 jca φnAB+1nnφAB+1n
39 38 adantlr φnAB+1nx+nφAB+1n
40 simplr φnAB+1nx+nx+
41 simpr φnAB+1nx+nn
42 2 ad4antr φAB+1nx+n1n<xA*
43 3 adantr φx+B
44 rpre x+x
45 44 adantl φx+x
46 43 45 readdcld φx+B+x
47 46 rexrd φx+B+x*
48 47 ad5ant13 φAB+1nx+n1n<xB+x*
49 11 ad5ant14 φAB+1nx+n1n<xB+1n*
50 simp-4r φAB+1nx+n1n<xAB+1n
51 8 ad2antlr φx+n1n<x1n
52 45 ad2antrr φx+n1n<xx
53 43 ad2antrr φx+n1n<xB
54 simpr φx+n1n<x1n<x
55 51 52 53 54 ltadd2dd φx+n1n<xB+1n<B+x
56 55 adantl3r φAB+1nx+n1n<xB+1n<B+x
57 42 49 48 50 56 xrlelttrd φAB+1nx+n1n<xA<B+x
58 42 48 57 xrltled φAB+1nx+n1n<xAB+x
59 58 ex φAB+1nx+n1n<xAB+x
60 39 40 41 59 syl21anc φnAB+1nx+n1n<xAB+x
61 60 ex φnAB+1nx+n1n<xAB+x
62 33 34 61 rexlimd φnAB+1nx+n1n<xAB+x
63 29 62 mpd φnAB+1nx+AB+x
64 63 ralrimiva φnAB+1nx+AB+x
65 xralrple A*BABx+AB+x
66 2 3 65 syl2anc φABx+AB+x
67 66 adantr φnAB+1nABx+AB+x
68 64 67 mpbird φnAB+1nAB
69 68 ex φnAB+1nAB
70 27 69 impbid φABnAB+1n