Metamath Proof Explorer


Theorem zltp1le

Description: Integer ordering relation. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion zltp1le MNM<NM+1N

Proof

Step Hyp Ref Expression
1 nnge1 NM1NM
2 1 a1i MNNM1NM
3 znnsub MNM<NNM
4 zre MM
5 zre NN
6 1re 1
7 leaddsub2 M1NM+1N1NM
8 6 7 mp3an2 MNM+1N1NM
9 4 5 8 syl2an MNM+1N1NM
10 2 3 9 3imtr4d MNM<NM+1N
11 4 adantr MNM
12 11 ltp1d MNM<M+1
13 peano2re MM+1
14 11 13 syl MNM+1
15 5 adantl MNN
16 ltletr MM+1NM<M+1M+1NM<N
17 11 14 15 16 syl3anc MNM<M+1M+1NM<N
18 12 17 mpand MNM+1NM<N
19 10 18 impbid MNM<NM+1N