| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 | ⊢ ( 𝐹  =  𝑃  →  ( 𝐹  =  ∅  ↔  𝑃  =  ∅ ) ) | 
						
							| 2 | 1 | anbi1d | ⊢ ( 𝐹  =  𝑃  →  ( ( 𝐹  =  ∅  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  ↔  ( 𝑃  =  ∅  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) ) | 
						
							| 3 |  | f0bi | ⊢ ( 𝑃 : ∅ ⟶ 𝑌  ↔  𝑃  =  ∅ ) | 
						
							| 4 |  | ffn | ⊢ ( 𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌  →  𝑃  Fn  ( 0 ..^ 𝑁 ) ) | 
						
							| 5 |  | ffn | ⊢ ( 𝑃 : ∅ ⟶ 𝑌  →  𝑃  Fn  ∅ ) | 
						
							| 6 |  | fndmu | ⊢ ( ( 𝑃  Fn  ( 0 ..^ 𝑁 )  ∧  𝑃  Fn  ∅ )  →  ( 0 ..^ 𝑁 )  =  ∅ ) | 
						
							| 7 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 8 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 10 |  | fzon | ⊢ ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ≤  0  ↔  ( 0 ..^ 𝑁 )  =  ∅ ) ) | 
						
							| 11 | 7 9 10 | sylancr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  ≤  0  ↔  ( 0 ..^ 𝑁 )  =  ∅ ) ) | 
						
							| 12 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 13 |  | 0red | ⊢ ( 𝑁  ∈  ℕ0  →  0  ∈  ℝ ) | 
						
							| 14 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 15 | 13 14 | letri3d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0  =  𝑁  ↔  ( 0  ≤  𝑁  ∧  𝑁  ≤  0 ) ) ) | 
						
							| 16 | 15 | biimprd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 0  ≤  𝑁  ∧  𝑁  ≤  0 )  →  0  =  𝑁 ) ) | 
						
							| 17 | 12 16 | mpand | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ≤  0  →  0  =  𝑁 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  ≤  0  →  0  =  𝑁 ) ) | 
						
							| 19 | 11 18 | sylbird | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( 0 ..^ 𝑁 )  =  ∅  →  0  =  𝑁 ) ) | 
						
							| 20 | 6 19 | syl5com | ⊢ ( ( 𝑃  Fn  ( 0 ..^ 𝑁 )  ∧  𝑃  Fn  ∅ )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  0  =  𝑁 ) ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝑃  Fn  ( 0 ..^ 𝑁 )  →  ( 𝑃  Fn  ∅  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  0  =  𝑁 ) ) ) | 
						
							| 22 | 4 5 21 | syl2imc | ⊢ ( 𝑃 : ∅ ⟶ 𝑌  →  ( 𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  0  =  𝑁 ) ) ) | 
						
							| 23 | 3 22 | sylbir | ⊢ ( 𝑃  =  ∅  →  ( 𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  0  =  𝑁 ) ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( 𝑃  =  ∅  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  0  =  𝑁 ) ) | 
						
							| 25 | 2 24 | biimtrdi | ⊢ ( 𝐹  =  𝑃  →  ( ( 𝐹  =  ∅  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  0  =  𝑁 ) ) ) | 
						
							| 26 | 25 | com3l | ⊢ ( ( 𝐹  =  ∅  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐹  =  𝑃  →  0  =  𝑁 ) ) ) | 
						
							| 27 | 26 | a1i | ⊢ ( 𝑀  =  0  →  ( ( 𝐹  =  ∅  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐹  =  𝑃  →  0  =  𝑁 ) ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑀  =  0  →  ( 0 ..^ 𝑀 )  =  ( 0 ..^ 0 ) ) | 
						
							| 29 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 30 | 28 29 | eqtrdi | ⊢ ( 𝑀  =  0  →  ( 0 ..^ 𝑀 )  =  ∅ ) | 
						
							| 31 | 30 | feq2d | ⊢ ( 𝑀  =  0  →  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ↔  𝐹 : ∅ ⟶ 𝑋 ) ) | 
						
							| 32 |  | f0bi | ⊢ ( 𝐹 : ∅ ⟶ 𝑋  ↔  𝐹  =  ∅ ) | 
						
							| 33 | 31 32 | bitrdi | ⊢ ( 𝑀  =  0  →  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ↔  𝐹  =  ∅ ) ) | 
						
							| 34 | 33 | anbi1d | ⊢ ( 𝑀  =  0  →  ( ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  ↔  ( 𝐹  =  ∅  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) ) | 
						
							| 35 |  | eqeq1 | ⊢ ( 𝑀  =  0  →  ( 𝑀  =  𝑁  ↔  0  =  𝑁 ) ) | 
						
							| 36 | 35 | imbi2d | ⊢ ( 𝑀  =  0  →  ( ( 𝐹  =  𝑃  →  𝑀  =  𝑁 )  ↔  ( 𝐹  =  𝑃  →  0  =  𝑁 ) ) ) | 
						
							| 37 | 36 | imbi2d | ⊢ ( 𝑀  =  0  →  ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐹  =  𝑃  →  𝑀  =  𝑁 ) )  ↔  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐹  =  𝑃  →  0  =  𝑁 ) ) ) ) | 
						
							| 38 | 27 34 37 | 3imtr4d | ⊢ ( 𝑀  =  0  →  ( ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐹  =  𝑃  →  𝑀  =  𝑁 ) ) ) ) | 
						
							| 39 | 38 | com3l | ⊢ ( ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  =  0  →  ( 𝐹  =  𝑃  →  𝑀  =  𝑁 ) ) ) ) | 
						
							| 40 | 39 | impcom | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) )  →  ( 𝑀  =  0  →  ( 𝐹  =  𝑃  →  𝑀  =  𝑁 ) ) ) | 
						
							| 41 | 40 | impcom | ⊢ ( ( 𝑀  =  0  ∧  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) )  →  ( 𝐹  =  𝑃  →  𝑀  =  𝑁 ) ) | 
						
							| 42 | 28 | feq2d | ⊢ ( 𝑀  =  0  →  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ↔  𝐹 : ( 0 ..^ 0 ) ⟶ 𝑋 ) ) | 
						
							| 43 | 29 | feq2i | ⊢ ( 𝐹 : ( 0 ..^ 0 ) ⟶ 𝑋  ↔  𝐹 : ∅ ⟶ 𝑋 ) | 
						
							| 44 | 43 32 | bitri | ⊢ ( 𝐹 : ( 0 ..^ 0 ) ⟶ 𝑋  ↔  𝐹  =  ∅ ) | 
						
							| 45 | 42 44 | bitrdi | ⊢ ( 𝑀  =  0  →  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ↔  𝐹  =  ∅ ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑀  =  0  ∧  𝑀  =  𝑁 )  →  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ↔  𝐹  =  ∅ ) ) | 
						
							| 47 |  | eqeq1 | ⊢ ( 𝑀  =  𝑁  →  ( 𝑀  =  0  ↔  𝑁  =  0 ) ) | 
						
							| 48 | 47 | biimpac | ⊢ ( ( 𝑀  =  0  ∧  𝑀  =  𝑁 )  →  𝑁  =  0 ) | 
						
							| 49 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 0 ..^ 𝑁 )  =  ( 0 ..^ 0 ) ) | 
						
							| 50 | 49 | feq2d | ⊢ ( 𝑁  =  0  →  ( 𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌  ↔  𝑃 : ( 0 ..^ 0 ) ⟶ 𝑌 ) ) | 
						
							| 51 | 29 | feq2i | ⊢ ( 𝑃 : ( 0 ..^ 0 ) ⟶ 𝑌  ↔  𝑃 : ∅ ⟶ 𝑌 ) | 
						
							| 52 | 51 3 | bitri | ⊢ ( 𝑃 : ( 0 ..^ 0 ) ⟶ 𝑌  ↔  𝑃  =  ∅ ) | 
						
							| 53 | 50 52 | bitrdi | ⊢ ( 𝑁  =  0  →  ( 𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌  ↔  𝑃  =  ∅ ) ) | 
						
							| 54 | 48 53 | syl | ⊢ ( ( 𝑀  =  0  ∧  𝑀  =  𝑁 )  →  ( 𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌  ↔  𝑃  =  ∅ ) ) | 
						
							| 55 | 46 54 | anbi12d | ⊢ ( ( 𝑀  =  0  ∧  𝑀  =  𝑁 )  →  ( ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  ↔  ( 𝐹  =  ∅  ∧  𝑃  =  ∅ ) ) ) | 
						
							| 56 |  | eqtr3 | ⊢ ( ( 𝐹  =  ∅  ∧  𝑃  =  ∅ )  →  𝐹  =  𝑃 ) | 
						
							| 57 | 55 56 | biimtrdi | ⊢ ( ( 𝑀  =  0  ∧  𝑀  =  𝑁 )  →  ( ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  →  𝐹  =  𝑃 ) ) | 
						
							| 58 | 57 | com12 | ⊢ ( ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  →  ( ( 𝑀  =  0  ∧  𝑀  =  𝑁 )  →  𝐹  =  𝑃 ) ) | 
						
							| 59 | 58 | expd | ⊢ ( ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  →  ( 𝑀  =  0  →  ( 𝑀  =  𝑁  →  𝐹  =  𝑃 ) ) ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) )  →  ( 𝑀  =  0  →  ( 𝑀  =  𝑁  →  𝐹  =  𝑃 ) ) ) | 
						
							| 61 | 60 | impcom | ⊢ ( ( 𝑀  =  0  ∧  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) )  →  ( 𝑀  =  𝑁  →  𝐹  =  𝑃 ) ) | 
						
							| 62 | 41 61 | impbid | ⊢ ( ( 𝑀  =  0  ∧  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) )  →  ( 𝐹  =  𝑃  ↔  𝑀  =  𝑁 ) ) | 
						
							| 63 |  | ral0 | ⊢ ∀ 𝑖  ∈  ∅ ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) | 
						
							| 64 | 30 | raleqdv | ⊢ ( 𝑀  =  0  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ∅ ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 65 | 63 64 | mpbiri | ⊢ ( 𝑀  =  0  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 66 | 65 | biantrud | ⊢ ( 𝑀  =  0  →  ( 𝑀  =  𝑁  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝑀  =  0  ∧  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) )  →  ( 𝑀  =  𝑁  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 68 | 62 67 | bitrd | ⊢ ( ( 𝑀  =  0  ∧  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) )  →  ( 𝐹  =  𝑃  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 69 |  | ffn | ⊢ ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  →  𝐹  Fn  ( 0 ..^ 𝑀 ) ) | 
						
							| 70 | 69 4 | anim12i | ⊢ ( ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 )  →  ( 𝐹  Fn  ( 0 ..^ 𝑀 )  ∧  𝑃  Fn  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) )  →  ( 𝐹  Fn  ( 0 ..^ 𝑀 )  ∧  𝑃  Fn  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ¬  𝑀  =  0  ∧  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) )  →  ( 𝐹  Fn  ( 0 ..^ 𝑀 )  ∧  𝑃  Fn  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 73 |  | eqfnfv2 | ⊢ ( ( 𝐹  Fn  ( 0 ..^ 𝑀 )  ∧  𝑃  Fn  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  =  𝑃  ↔  ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( ( ¬  𝑀  =  0  ∧  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) )  →  ( 𝐹  =  𝑃  ↔  ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 75 |  | df-ne | ⊢ ( 𝑀  ≠  0  ↔  ¬  𝑀  =  0 ) | 
						
							| 76 |  | elnnne0 | ⊢ ( 𝑀  ∈  ℕ  ↔  ( 𝑀  ∈  ℕ0  ∧  𝑀  ≠  0 ) ) | 
						
							| 77 |  | 0zd | ⊢ ( 𝑀  ∈  ℕ  →  0  ∈  ℤ ) | 
						
							| 78 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 79 |  | nngt0 | ⊢ ( 𝑀  ∈  ℕ  →  0  <  𝑀 ) | 
						
							| 80 | 77 78 79 | 3jca | ⊢ ( 𝑀  ∈  ℕ  →  ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  0  <  𝑀 ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  0  <  𝑀 ) ) | 
						
							| 82 |  | fzoopth | ⊢ ( ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  0  <  𝑀 )  →  ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ↔  ( 0  =  0  ∧  𝑀  =  𝑁 ) ) ) | 
						
							| 83 | 81 82 | syl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ↔  ( 0  =  0  ∧  𝑀  =  𝑁 ) ) ) | 
						
							| 84 |  | simpr | ⊢ ( ( 0  =  0  ∧  𝑀  =  𝑁 )  →  𝑀  =  𝑁 ) | 
						
							| 85 | 83 84 | biimtrdi | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  →  𝑀  =  𝑁 ) ) | 
						
							| 86 | 85 | anim1d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) )  →  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 87 |  | oveq2 | ⊢ ( 𝑀  =  𝑁  →  ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 88 | 87 | anim1i | ⊢ ( ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) )  →  ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 89 | 86 88 | impbid1 | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) )  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 90 | 89 | ex | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ℕ0  →  ( ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) )  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) ) | 
						
							| 91 | 76 90 | sylbir | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≠  0 )  →  ( 𝑁  ∈  ℕ0  →  ( ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) )  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) ) | 
						
							| 92 | 91 | impancom | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  ≠  0  →  ( ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) )  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) ) | 
						
							| 93 | 75 92 | biimtrrid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ¬  𝑀  =  0  →  ( ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) )  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) )  →  ( ¬  𝑀  =  0  →  ( ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) )  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) ) | 
						
							| 95 | 94 | impcom | ⊢ ( ( ¬  𝑀  =  0  ∧  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) )  →  ( ( ( 0 ..^ 𝑀 )  =  ( 0 ..^ 𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) )  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 96 | 74 95 | bitrd | ⊢ ( ( ¬  𝑀  =  0  ∧  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) ) )  →  ( 𝐹  =  𝑃  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 97 | 68 96 | pm2.61ian | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐹 : ( 0 ..^ 𝑀 ) ⟶ 𝑋  ∧  𝑃 : ( 0 ..^ 𝑁 ) ⟶ 𝑌 ) )  →  ( 𝐹  =  𝑃  ↔  ( 𝑀  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) ) ) |