| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexfrabdioph.1 |
⊢ 𝑀 = ( 𝑁 + 1 ) |
| 2 |
|
rexfrabdioph.2 |
⊢ 𝐿 = ( 𝑀 + 1 ) |
| 3 |
|
rexfrabdioph.3 |
⊢ 𝐾 = ( 𝐿 + 1 ) |
| 4 |
|
rexfrabdioph.4 |
⊢ 𝐽 = ( 𝐾 + 1 ) |
| 5 |
|
rexfrabdioph.5 |
⊢ 𝐼 = ( 𝐽 + 1 ) |
| 6 |
|
rexfrabdioph.6 |
⊢ 𝐻 = ( 𝐼 + 1 ) |
| 7 |
|
rexfrabdioph.7 |
⊢ 𝐺 = ( 𝐻 + 1 ) |
| 8 |
|
sbc2rex |
⊢ ( [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 ↔ ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 ) |
| 9 |
|
sbc4rex |
⊢ ( [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 ↔ ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 10 |
9
|
2rexbii |
⊢ ( ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 ↔ ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 11 |
8 10
|
bitri |
⊢ ( [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 ↔ ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 12 |
11
|
sbcbii |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 ↔ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 13 |
|
sbc2rex |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ↔ ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 14 |
|
sbc4rex |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ↔ ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 15 |
14
|
2rexbii |
⊢ ( ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ↔ ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 16 |
12 13 15
|
3bitri |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 ↔ ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 17 |
16
|
rabbii |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } |
| 18 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 19 |
1 18
|
eqeltrid |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ℕ ) |
| 20 |
19
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ℕ0 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 } ∈ ( Dioph ‘ 𝐺 ) ) → 𝑀 ∈ ℕ0 ) |
| 22 |
|
sbcrot3 |
⊢ ( [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) |
| 23 |
22
|
sbcbii |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) |
| 24 |
|
sbcrot3 |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) |
| 25 |
|
sbcrot5 |
⊢ ( [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 26 |
25
|
sbcbii |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 27 |
|
sbcrot5 |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 28 |
26 27
|
bitri |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 29 |
28
|
sbcbii |
⊢ ( [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 30 |
29
|
sbcbii |
⊢ ( [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 31 |
23 24 30
|
3bitri |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 32 |
31
|
sbcbii |
⊢ ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
| 33 |
|
reseq1 |
⊢ ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝑀 ) ) → ( 𝑎 ↾ ( 1 ... 𝑁 ) ) = ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ) |
| 34 |
33
|
sbccomieg |
⊢ ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) |
| 35 |
|
fzssp1 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) |
| 36 |
1
|
oveq2i |
⊢ ( 1 ... 𝑀 ) = ( 1 ... ( 𝑁 + 1 ) ) |
| 37 |
35 36
|
sseqtrri |
⊢ ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) |
| 38 |
|
resabs1 |
⊢ ( ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) → ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) |
| 39 |
|
dfsbcq |
⊢ ( ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) → ( [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) ) |
| 40 |
37 38 39
|
mp2b |
⊢ ( [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) |
| 41 |
|
vex |
⊢ 𝑡 ∈ V |
| 42 |
41
|
resex |
⊢ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ∈ V |
| 43 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝑀 ) ) → ( 𝑎 ‘ 𝑀 ) = ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) ) |
| 44 |
43
|
sbcco3gw |
⊢ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ∈ V → ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) ) |
| 45 |
42 44
|
ax-mp |
⊢ ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) |
| 46 |
|
elfz1end |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 47 |
19 46
|
sylib |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 48 |
|
fvres |
⊢ ( 𝑀 ∈ ( 1 ... 𝑀 ) → ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) = ( 𝑡 ‘ 𝑀 ) ) |
| 49 |
|
dfsbcq |
⊢ ( ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) = ( 𝑡 ‘ 𝑀 ) → ( [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) ) |
| 50 |
47 48 49
|
3syl |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) ) |
| 51 |
45 50
|
bitrid |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) ) |
| 52 |
51
|
sbcbidv |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) ) |
| 53 |
40 52
|
bitrid |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) ) |
| 54 |
34 53
|
bitrid |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) ) |
| 55 |
32 54
|
bitr3id |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 ) ) |
| 56 |
55
|
rabbidv |
⊢ ( 𝑁 ∈ ℕ0 → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 } ) |
| 57 |
56
|
eleq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ∈ ( Dioph ‘ 𝐺 ) ↔ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 } ∈ ( Dioph ‘ 𝐺 ) ) ) |
| 58 |
57
|
biimpar |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 } ∈ ( Dioph ‘ 𝐺 ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ∈ ( Dioph ‘ 𝐺 ) ) |
| 59 |
2 3 4 5 6 7
|
6rexfrabdioph |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ∈ ( Dioph ‘ 𝐺 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) |
| 60 |
21 58 59
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 } ∈ ( Dioph ‘ 𝐺 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) |
| 61 |
17 60
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 } ∈ ( Dioph ‘ 𝐺 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) |
| 62 |
1
|
rexfrabdioph |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) → { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ) |
| 63 |
61 62
|
syldan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐺 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑡 ‘ 𝐼 ) / 𝑧 ] [ ( 𝑡 ‘ 𝐻 ) / 𝑝 ] [ ( 𝑡 ‘ 𝐺 ) / 𝑞 ] 𝜑 } ∈ ( Dioph ‘ 𝐺 ) ) → { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 ∃ 𝑧 ∈ ℕ0 ∃ 𝑝 ∈ ℕ0 ∃ 𝑞 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ) |