Metamath Proof Explorer


Theorem 7rexfrabdioph

Description: Diophantine set builder for existential quantifier, explicit substitution, seven variables. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses rexfrabdioph.1 M=N+1
rexfrabdioph.2 L=M+1
rexfrabdioph.3 K=L+1
rexfrabdioph.4 J=K+1
rexfrabdioph.5 I=J+1
rexfrabdioph.6 H=I+1
rexfrabdioph.7 G=H+1
Assertion 7rexfrabdioph N0t01G|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φDiophGu01N|v0w0x0y0z0p0q0φDiophN

Proof

Step Hyp Ref Expression
1 rexfrabdioph.1 M=N+1
2 rexfrabdioph.2 L=M+1
3 rexfrabdioph.3 K=L+1
4 rexfrabdioph.4 J=K+1
5 rexfrabdioph.5 I=J+1
6 rexfrabdioph.6 H=I+1
7 rexfrabdioph.7 G=H+1
8 sbc2rex [˙aM/v]˙w0x0y0z0p0q0φw0x0[˙aM/v]˙y0z0p0q0φ
9 sbc4rex [˙aM/v]˙y0z0p0q0φy0z0p0q0[˙aM/v]˙φ
10 9 2rexbii w0x0[˙aM/v]˙y0z0p0q0φw0x0y0z0p0q0[˙aM/v]˙φ
11 8 10 bitri [˙aM/v]˙w0x0y0z0p0q0φw0x0y0z0p0q0[˙aM/v]˙φ
12 11 sbcbii [˙a1N/u]˙[˙aM/v]˙w0x0y0z0p0q0φ[˙a1N/u]˙w0x0y0z0p0q0[˙aM/v]˙φ
13 sbc2rex [˙a1N/u]˙w0x0y0z0p0q0[˙aM/v]˙φw0x0[˙a1N/u]˙y0z0p0q0[˙aM/v]˙φ
14 sbc4rex [˙a1N/u]˙y0z0p0q0[˙aM/v]˙φy0z0p0q0[˙a1N/u]˙[˙aM/v]˙φ
15 14 2rexbii w0x0[˙a1N/u]˙y0z0p0q0[˙aM/v]˙φw0x0y0z0p0q0[˙a1N/u]˙[˙aM/v]˙φ
16 12 13 15 3bitri [˙a1N/u]˙[˙aM/v]˙w0x0y0z0p0q0φw0x0y0z0p0q0[˙a1N/u]˙[˙aM/v]˙φ
17 16 rabbii a01M|[˙a1N/u]˙[˙aM/v]˙w0x0y0z0p0q0φ=a01M|w0x0y0z0p0q0[˙a1N/u]˙[˙aM/v]˙φ
18 nn0p1nn N0N+1
19 1 18 eqeltrid N0M
20 19 nnnn0d N0M0
21 20 adantr N0t01G|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φDiophGM0
22 sbcrot3 [˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙tL/w]˙[˙tK/x]˙[˙aM/v]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
23 22 sbcbii [˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙a1N/u]˙[˙tL/w]˙[˙tK/x]˙[˙aM/v]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
24 sbcrot3 [˙a1N/u]˙[˙tL/w]˙[˙tK/x]˙[˙aM/v]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙tL/w]˙[˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
25 sbcrot5 [˙aM/v]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙aM/v]˙φ
26 25 sbcbii [˙a1N/u]˙[˙aM/v]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙a1N/u]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙aM/v]˙φ
27 sbcrot5 [˙a1N/u]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙aM/v]˙φ[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φ
28 26 27 bitri [˙a1N/u]˙[˙aM/v]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φ
29 28 sbcbii [˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φ
30 29 sbcbii [˙tL/w]˙[˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φ
31 23 24 30 3bitri [˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φ
32 31 sbcbii [˙t1M/a]˙[˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φ
33 reseq1 a=t1Ma1N=t1M1N
34 33 sbccomieg [˙t1M/a]˙[˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
35 fzssp1 1N1N+1
36 1 oveq2i 1M=1N+1
37 35 36 sseqtrri 1N1M
38 resabs1 1N1Mt1M1N=t1N
39 dfsbcq t1M1N=t1N[˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙t1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
40 37 38 39 mp2b [˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙t1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
41 vex tV
42 41 resex t1MV
43 fveq1 a=t1MaM=t1MM
44 43 sbcco3gw t1MV[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙t1MM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
45 42 44 ax-mp [˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙t1MM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
46 elfz1end MM1M
47 19 46 sylib N0M1M
48 fvres M1Mt1MM=tM
49 dfsbcq t1MM=tM[˙t1MM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
50 47 48 49 3syl N0[˙t1MM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
51 45 50 bitrid N0[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
52 51 sbcbidv N0[˙t1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
53 40 52 bitrid N0[˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
54 34 53 bitrid N0[˙t1M/a]˙[˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
55 32 54 bitr3id N0[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
56 55 rabbidv N0t01G|[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φ=t01G|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φ
57 56 eleq1d N0t01G|[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φDiophGt01G|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φDiophG
58 57 biimpar N0t01G|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φDiophGt01G|[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φDiophG
59 2 3 4 5 6 7 6rexfrabdioph M0t01G|[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙[˙a1N/u]˙[˙aM/v]˙φDiophGa01M|w0x0y0z0p0q0[˙a1N/u]˙[˙aM/v]˙φDiophM
60 21 58 59 syl2anc N0t01G|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φDiophGa01M|w0x0y0z0p0q0[˙a1N/u]˙[˙aM/v]˙φDiophM
61 17 60 eqeltrid N0t01G|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φDiophGa01M|[˙a1N/u]˙[˙aM/v]˙w0x0y0z0p0q0φDiophM
62 1 rexfrabdioph N0a01M|[˙a1N/u]˙[˙aM/v]˙w0x0y0z0p0q0φDiophMu01N|v0w0x0y0z0p0q0φDiophN
63 61 62 syldan N0t01G|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙[˙tI/z]˙[˙tH/p]˙[˙tG/q]˙φDiophGu01N|v0w0x0y0z0p0q0φDiophN