Description: Diophantine set builder for existential quantifier, explicit substitution, seven variables. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexfrabdioph.1 | |
|
rexfrabdioph.2 | |
||
rexfrabdioph.3 | |
||
rexfrabdioph.4 | |
||
rexfrabdioph.5 | |
||
rexfrabdioph.6 | |
||
rexfrabdioph.7 | |
||
Assertion | 7rexfrabdioph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexfrabdioph.1 | |
|
2 | rexfrabdioph.2 | |
|
3 | rexfrabdioph.3 | |
|
4 | rexfrabdioph.4 | |
|
5 | rexfrabdioph.5 | |
|
6 | rexfrabdioph.6 | |
|
7 | rexfrabdioph.7 | |
|
8 | sbc2rex | |
|
9 | sbc4rex | |
|
10 | 9 | 2rexbii | |
11 | 8 10 | bitri | |
12 | 11 | sbcbii | |
13 | sbc2rex | |
|
14 | sbc4rex | |
|
15 | 14 | 2rexbii | |
16 | 12 13 15 | 3bitri | |
17 | 16 | rabbii | |
18 | nn0p1nn | |
|
19 | 1 18 | eqeltrid | |
20 | 19 | nnnn0d | |
21 | 20 | adantr | |
22 | sbcrot3 | |
|
23 | 22 | sbcbii | |
24 | sbcrot3 | |
|
25 | sbcrot5 | |
|
26 | 25 | sbcbii | |
27 | sbcrot5 | |
|
28 | 26 27 | bitri | |
29 | 28 | sbcbii | |
30 | 29 | sbcbii | |
31 | 23 24 30 | 3bitri | |
32 | 31 | sbcbii | |
33 | reseq1 | |
|
34 | 33 | sbccomieg | |
35 | fzssp1 | |
|
36 | 1 | oveq2i | |
37 | 35 36 | sseqtrri | |
38 | resabs1 | |
|
39 | dfsbcq | |
|
40 | 37 38 39 | mp2b | |
41 | vex | |
|
42 | 41 | resex | |
43 | fveq1 | |
|
44 | 43 | sbcco3gw | |
45 | 42 44 | ax-mp | |
46 | elfz1end | |
|
47 | 19 46 | sylib | |
48 | fvres | |
|
49 | dfsbcq | |
|
50 | 47 48 49 | 3syl | |
51 | 45 50 | bitrid | |
52 | 51 | sbcbidv | |
53 | 40 52 | bitrid | |
54 | 34 53 | bitrid | |
55 | 32 54 | bitr3id | |
56 | 55 | rabbidv | |
57 | 56 | eleq1d | |
58 | 57 | biimpar | |
59 | 2 3 4 5 6 7 | 6rexfrabdioph | |
60 | 21 58 59 | syl2anc | |
61 | 17 60 | eqeltrid | |
62 | 1 | rexfrabdioph | |
63 | 61 62 | syldan | |