| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( bday ‘ ( 𝑥 +s 𝑦 ) ) = ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑥 = 𝑥𝑂 → ( bday ‘ 𝑥 ) = ( bday ‘ 𝑥𝑂 ) ) |
| 3 |
2
|
oveq1d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ) |
| 4 |
1 3
|
sseq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( bday ‘ ( 𝑥 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ↔ ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 +s 𝑦 ) = ( 𝑥𝑂 +s 𝑦𝑂 ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) = ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( bday ‘ 𝑦 ) = ( bday ‘ 𝑦𝑂 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ) |
| 9 |
6 8
|
sseq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ↔ ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) |
| 10 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) = ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ) |
| 11 |
2
|
oveq1d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) = ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ) |
| 12 |
10 11
|
sseq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ↔ ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) |
| 13 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( bday ‘ ( 𝑥 +s 𝑦 ) ) = ( bday ‘ ( 𝐴 +s 𝑦 ) ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( bday ‘ 𝑥 ) = ( bday ‘ 𝐴 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) ) |
| 16 |
13 15
|
sseq12d |
⊢ ( 𝑥 = 𝐴 → ( ( bday ‘ ( 𝑥 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ↔ ( bday ‘ ( 𝐴 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +s 𝑦 ) = ( 𝐴 +s 𝐵 ) ) |
| 18 |
17
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( bday ‘ ( 𝐴 +s 𝑦 ) ) = ( bday ‘ ( 𝐴 +s 𝐵 ) ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( bday ‘ 𝑦 ) = ( bday ‘ 𝐵 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
| 21 |
18 20
|
sseq12d |
⊢ ( 𝑦 = 𝐵 → ( ( bday ‘ ( 𝐴 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) ↔ ( bday ‘ ( 𝐴 +s 𝐵 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
| 22 |
|
addsval2 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( 𝑥 +s 𝑦 ) = ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) |s ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) |
| 23 |
22
|
fveq2d |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( bday ‘ ( 𝑥 +s 𝑦 ) ) = ( bday ‘ ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) |s ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday ‘ ( 𝑥 +s 𝑦 ) ) = ( bday ‘ ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) |s ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) ) |
| 25 |
|
simpl |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → 𝑥 ∈ No ) |
| 26 |
|
simpr |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → 𝑦 ∈ No ) |
| 27 |
25 26
|
addscut2 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) <<s ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) |
| 28 |
|
imaundi |
⊢ ( bday “ ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ∪ ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) = ( ( bday “ ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ∪ ( bday “ ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) |
| 29 |
|
imaundi |
⊢ ( bday “ ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) = ( ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ) ∪ ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) |
| 30 |
|
imaundi |
⊢ ( bday “ ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) = ( ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ) ∪ ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) |
| 31 |
29 30
|
uneq12i |
⊢ ( ( bday “ ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ∪ ( bday “ ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) = ( ( ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ) ∪ ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ∪ ( ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ) ∪ ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) |
| 32 |
28 31
|
eqtri |
⊢ ( bday “ ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ∪ ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) = ( ( ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ) ∪ ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ∪ ( ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ) ∪ ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) |
| 33 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → 𝑦 ∈ No ) |
| 34 |
|
simpr2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ) |
| 35 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) → 𝑦 ∈ No ) |
| 36 |
|
leftssno |
⊢ ( L ‘ 𝑥 ) ⊆ No |
| 37 |
|
rightssno |
⊢ ( R ‘ 𝑥 ) ⊆ No |
| 38 |
36 37
|
unssi |
⊢ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ⊆ No |
| 39 |
38
|
sseli |
⊢ ( 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) → 𝑥𝑂 ∈ No ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) → 𝑥𝑂 ∈ No ) |
| 41 |
35 40
|
addscomd |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) → ( 𝑦 +s 𝑥𝑂 ) = ( 𝑥𝑂 +s 𝑦 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) → ( bday ‘ ( 𝑦 +s 𝑥𝑂 ) ) = ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ) |
| 43 |
|
bdayelon |
⊢ ( bday ‘ 𝑦 ) ∈ On |
| 44 |
|
bdayelon |
⊢ ( bday ‘ 𝑥𝑂 ) ∈ On |
| 45 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑦 ) ∈ On ∧ ( bday ‘ 𝑥𝑂 ) ∈ On ) → ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥𝑂 ) ) = ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ) |
| 46 |
43 44 45
|
mp2an |
⊢ ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥𝑂 ) ) = ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) |
| 47 |
46
|
a1i |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) → ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥𝑂 ) ) = ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ) |
| 48 |
42 47
|
sseq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) → ( ( bday ‘ ( 𝑦 +s 𝑥𝑂 ) ) ⊆ ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥𝑂 ) ) ↔ ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ) ) |
| 49 |
48
|
ralbidva |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑦 +s 𝑥𝑂 ) ) ⊆ ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥𝑂 ) ) ↔ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑦 +s 𝑥𝑂 ) ) ⊆ ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥𝑂 ) ) ↔ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ) ) |
| 51 |
34 50
|
mpbird |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑦 +s 𝑥𝑂 ) ) ⊆ ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥𝑂 ) ) ) |
| 52 |
|
ssun1 |
⊢ ( L ‘ 𝑥 ) ⊆ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) |
| 53 |
33 51 52
|
addsbdaylem |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑦 +s 𝑥𝐿 ) } ) ⊆ ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥 ) ) ) |
| 54 |
36
|
sseli |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 ∈ No ) |
| 55 |
54
|
adantl |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 ∈ No ) |
| 56 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑦 ∈ No ) |
| 57 |
55 56
|
addscomd |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s 𝑦 ) = ( 𝑦 +s 𝑥𝐿 ) ) |
| 58 |
57
|
eqeq2d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑧 = ( 𝑥𝐿 +s 𝑦 ) ↔ 𝑧 = ( 𝑦 +s 𝑥𝐿 ) ) ) |
| 59 |
58
|
rexbidva |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑦 +s 𝑥𝐿 ) ) ) |
| 60 |
59
|
abbidv |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } = { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑦 +s 𝑥𝐿 ) } ) |
| 61 |
60
|
imaeq2d |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ) = ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑦 +s 𝑥𝐿 ) } ) ) |
| 62 |
61
|
adantr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ) = ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑦 +s 𝑥𝐿 ) } ) ) |
| 63 |
|
bdayelon |
⊢ ( bday ‘ 𝑥 ) ∈ On |
| 64 |
|
naddcom |
⊢ ( ( ( bday ‘ 𝑥 ) ∈ On ∧ ( bday ‘ 𝑦 ) ∈ On ) → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥 ) ) ) |
| 65 |
63 43 64
|
mp2an |
⊢ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥 ) ) |
| 66 |
65
|
a1i |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥 ) ) ) |
| 67 |
53 62 66
|
3sstr4d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 68 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → 𝑥 ∈ No ) |
| 69 |
|
simpr3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) |
| 70 |
|
ssun1 |
⊢ ( L ‘ 𝑦 ) ⊆ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |
| 71 |
68 69 70
|
addsbdaylem |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 72 |
67 71
|
unssd |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ) ∪ ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 73 |
|
ssun2 |
⊢ ( R ‘ 𝑥 ) ⊆ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) |
| 74 |
33 51 73
|
addsbdaylem |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑦 +s 𝑥𝑅 ) } ) ⊆ ( ( bday ‘ 𝑦 ) +no ( bday ‘ 𝑥 ) ) ) |
| 75 |
37
|
sseli |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥𝑅 ∈ No ) |
| 76 |
75
|
adantl |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥𝑅 ∈ No ) |
| 77 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑦 ∈ No ) |
| 78 |
76 77
|
addscomd |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥𝑅 +s 𝑦 ) = ( 𝑦 +s 𝑥𝑅 ) ) |
| 79 |
78
|
eqeq2d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑧 = ( 𝑥𝑅 +s 𝑦 ) ↔ 𝑧 = ( 𝑦 +s 𝑥𝑅 ) ) ) |
| 80 |
79
|
rexbidva |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑦 +s 𝑥𝑅 ) ) ) |
| 81 |
80
|
abbidv |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } = { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑦 +s 𝑥𝑅 ) } ) |
| 82 |
81
|
imaeq2d |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ) = ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑦 +s 𝑥𝑅 ) } ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ) = ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑦 +s 𝑥𝑅 ) } ) ) |
| 84 |
74 83 66
|
3sstr4d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 85 |
|
ssun2 |
⊢ ( R ‘ 𝑦 ) ⊆ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |
| 86 |
68 69 85
|
addsbdaylem |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 87 |
84 86
|
unssd |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ) ∪ ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 88 |
72 87
|
unssd |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( ( ( bday “ { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ) ∪ ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ∪ ( ( bday “ { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ) ∪ ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 89 |
32 88
|
eqsstrid |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday “ ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ∪ ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 90 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑥 ) ∈ On ∧ ( bday ‘ 𝑦 ) ∈ On ) → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∈ On ) |
| 91 |
63 43 90
|
mp2an |
⊢ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∈ On |
| 92 |
|
scutbdaybnd |
⊢ ( ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) <<s ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ∧ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∈ On ∧ ( bday “ ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ∪ ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) → ( bday ‘ ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) |s ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 93 |
91 92
|
mp3an2 |
⊢ ( ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) <<s ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ∧ ( bday “ ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ∪ ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) → ( bday ‘ ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) |s ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 94 |
27 89 93
|
syl2an2r |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday ‘ ( ( { 𝑧 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑧 = ( 𝑥𝐿 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) |s ( { 𝑧 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑧 = ( 𝑥𝑅 +s 𝑦 ) } ∪ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ ( R ‘ 𝑦 ) 𝑧 = ( 𝑥 +s 𝑦𝐿 ) } ) ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 95 |
24 94
|
eqsstrd |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) ) → ( bday ‘ ( 𝑥 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) |
| 96 |
95
|
ex |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( bday ‘ ( 𝑥𝑂 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥𝑂 ) +no ( bday ‘ 𝑦 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( bday ‘ ( 𝑥 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦𝑂 ) ) ) → ( bday ‘ ( 𝑥 +s 𝑦 ) ) ⊆ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ) ) |
| 97 |
4 9 12 16 21 96
|
no2inds |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( bday ‘ ( 𝐴 +s 𝐵 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |