Step |
Hyp |
Ref |
Expression |
1 |
|
addsbdaylem.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addsbdaylem.2 |
⊢ ( 𝜑 → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ( bday ‘ ( 𝐴 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝑂 ) ) ) |
3 |
|
addsbdaylem.3 |
⊢ 𝑆 ⊆ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( 𝐴 +s 𝑦𝑂 ) = ( 𝐴 +s 𝑦𝐿 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( bday ‘ ( 𝐴 +s 𝑦𝑂 ) ) = ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( bday ‘ 𝑦𝑂 ) = ( bday ‘ 𝑦𝐿 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝑂 ) ) = ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝐿 ) ) ) |
8 |
5 7
|
sseq12d |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( ( bday ‘ ( 𝐴 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝑂 ) ) ↔ ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝐿 ) ) ) ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ( bday ‘ ( 𝐴 +s 𝑦𝑂 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝑂 ) ) ) |
10 |
3
|
sseli |
⊢ ( 𝑦𝐿 ∈ 𝑆 → 𝑦𝐿 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → 𝑦𝐿 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
12 |
8 9 11
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝐿 ) ) ) |
13 |
|
lrold |
⊢ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) = ( O ‘ ( bday ‘ 𝐵 ) ) |
14 |
3 13
|
sseqtri |
⊢ 𝑆 ⊆ ( O ‘ ( bday ‘ 𝐵 ) ) |
15 |
14
|
sseli |
⊢ ( 𝑦𝐿 ∈ 𝑆 → 𝑦𝐿 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ) |
16 |
|
oldbdayim |
⊢ ( 𝑦𝐿 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) → ( bday ‘ 𝑦𝐿 ) ∈ ( bday ‘ 𝐵 ) ) |
17 |
15 16
|
syl |
⊢ ( 𝑦𝐿 ∈ 𝑆 → ( bday ‘ 𝑦𝐿 ) ∈ ( bday ‘ 𝐵 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → ( bday ‘ 𝑦𝐿 ) ∈ ( bday ‘ 𝐵 ) ) |
19 |
|
bdayelon |
⊢ ( bday ‘ 𝑦𝐿 ) ∈ On |
20 |
|
bdayelon |
⊢ ( bday ‘ 𝐵 ) ∈ On |
21 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
22 |
|
naddel2 |
⊢ ( ( ( bday ‘ 𝑦𝐿 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ) → ( ( bday ‘ 𝑦𝐿 ) ∈ ( bday ‘ 𝐵 ) ↔ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝐿 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
23 |
19 20 21 22
|
mp3an |
⊢ ( ( bday ‘ 𝑦𝐿 ) ∈ ( bday ‘ 𝐵 ) ↔ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝐿 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
24 |
18 23
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝐿 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
25 |
|
bdayelon |
⊢ ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ∈ On |
26 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝐵 ) ∈ On ) → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) |
27 |
21 20 26
|
mp2an |
⊢ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On |
28 |
|
ontr2 |
⊢ ( ( ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ∈ On ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∈ On ) → ( ( ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝐿 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝐿 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) → ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
29 |
25 27 28
|
mp2an |
⊢ ( ( ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝐿 ) ) ∧ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦𝐿 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) → ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
30 |
12 24 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
31 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐴 +s 𝑦𝐿 ) → ( bday ‘ 𝑤 ) = ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ) |
32 |
31
|
eleq1d |
⊢ ( 𝑤 = ( 𝐴 +s 𝑦𝐿 ) → ( ( bday ‘ 𝑤 ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ( bday ‘ ( 𝐴 +s 𝑦𝐿 ) ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
33 |
30 32
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → ( 𝑤 = ( 𝐴 +s 𝑦𝐿 ) → ( bday ‘ 𝑤 ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
34 |
33
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑦𝐿 ∈ 𝑆 𝑤 = ( 𝐴 +s 𝑦𝐿 ) → ( bday ‘ 𝑤 ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
35 |
34
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑤 ( ∃ 𝑦𝐿 ∈ 𝑆 𝑤 = ( 𝐴 +s 𝑦𝐿 ) → ( bday ‘ 𝑤 ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
36 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝐴 +s 𝑦𝐿 ) ↔ 𝑤 = ( 𝐴 +s 𝑦𝐿 ) ) ) |
37 |
36
|
rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) ↔ ∃ 𝑦𝐿 ∈ 𝑆 𝑤 = ( 𝐴 +s 𝑦𝐿 ) ) ) |
38 |
37
|
ralab |
⊢ ( ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) } ( bday ‘ 𝑤 ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ∀ 𝑤 ( ∃ 𝑦𝐿 ∈ 𝑆 𝑤 = ( 𝐴 +s 𝑦𝐿 ) → ( bday ‘ 𝑤 ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
39 |
35 38
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) } ( bday ‘ 𝑤 ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
40 |
|
bdayfun |
⊢ Fun bday |
41 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → 𝐴 ∈ No ) |
42 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
43 |
|
rightssno |
⊢ ( R ‘ 𝐵 ) ⊆ No |
44 |
42 43
|
unssi |
⊢ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ⊆ No |
45 |
3 44
|
sstri |
⊢ 𝑆 ⊆ No |
46 |
45
|
sseli |
⊢ ( 𝑦𝐿 ∈ 𝑆 → 𝑦𝐿 ∈ No ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → 𝑦𝐿 ∈ No ) |
48 |
41 47
|
addscld |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → ( 𝐴 +s 𝑦𝐿 ) ∈ No ) |
49 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝐴 +s 𝑦𝐿 ) → ( 𝑧 ∈ No ↔ ( 𝐴 +s 𝑦𝐿 ) ∈ No ) ) |
50 |
48 49
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑦𝐿 ∈ 𝑆 ) → ( 𝑧 = ( 𝐴 +s 𝑦𝐿 ) → 𝑧 ∈ No ) ) |
51 |
50
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) → 𝑧 ∈ No ) ) |
52 |
51
|
abssdv |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) } ⊆ No ) |
53 |
|
bdaydm |
⊢ dom bday = No |
54 |
52 53
|
sseqtrrdi |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) } ⊆ dom bday ) |
55 |
|
funimass4 |
⊢ ( ( Fun bday ∧ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) } ⊆ dom bday ) → ( ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) } ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) } ( bday ‘ 𝑤 ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
56 |
40 54 55
|
sylancr |
⊢ ( 𝜑 → ( ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) } ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) } ( bday ‘ 𝑤 ) ∈ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) ) |
57 |
39 56
|
mpbird |
⊢ ( 𝜑 → ( bday “ { 𝑧 ∣ ∃ 𝑦𝐿 ∈ 𝑆 𝑧 = ( 𝐴 +s 𝑦𝐿 ) } ) ⊆ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |