Step |
Hyp |
Ref |
Expression |
1 |
|
addsbdaylem.1 |
|- ( ph -> A e. No ) |
2 |
|
addsbdaylem.2 |
|- ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( bday ` ( A +s yO ) ) C_ ( ( bday ` A ) +no ( bday ` yO ) ) ) |
3 |
|
addsbdaylem.3 |
|- S C_ ( ( _Left ` B ) u. ( _Right ` B ) ) |
4 |
|
oveq2 |
|- ( yO = yL -> ( A +s yO ) = ( A +s yL ) ) |
5 |
4
|
fveq2d |
|- ( yO = yL -> ( bday ` ( A +s yO ) ) = ( bday ` ( A +s yL ) ) ) |
6 |
|
fveq2 |
|- ( yO = yL -> ( bday ` yO ) = ( bday ` yL ) ) |
7 |
6
|
oveq2d |
|- ( yO = yL -> ( ( bday ` A ) +no ( bday ` yO ) ) = ( ( bday ` A ) +no ( bday ` yL ) ) ) |
8 |
5 7
|
sseq12d |
|- ( yO = yL -> ( ( bday ` ( A +s yO ) ) C_ ( ( bday ` A ) +no ( bday ` yO ) ) <-> ( bday ` ( A +s yL ) ) C_ ( ( bday ` A ) +no ( bday ` yL ) ) ) ) |
9 |
2
|
adantr |
|- ( ( ph /\ yL e. S ) -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( bday ` ( A +s yO ) ) C_ ( ( bday ` A ) +no ( bday ` yO ) ) ) |
10 |
3
|
sseli |
|- ( yL e. S -> yL e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) |
11 |
10
|
adantl |
|- ( ( ph /\ yL e. S ) -> yL e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) |
12 |
8 9 11
|
rspcdva |
|- ( ( ph /\ yL e. S ) -> ( bday ` ( A +s yL ) ) C_ ( ( bday ` A ) +no ( bday ` yL ) ) ) |
13 |
|
lrold |
|- ( ( _Left ` B ) u. ( _Right ` B ) ) = ( _Old ` ( bday ` B ) ) |
14 |
3 13
|
sseqtri |
|- S C_ ( _Old ` ( bday ` B ) ) |
15 |
14
|
sseli |
|- ( yL e. S -> yL e. ( _Old ` ( bday ` B ) ) ) |
16 |
|
oldbdayim |
|- ( yL e. ( _Old ` ( bday ` B ) ) -> ( bday ` yL ) e. ( bday ` B ) ) |
17 |
15 16
|
syl |
|- ( yL e. S -> ( bday ` yL ) e. ( bday ` B ) ) |
18 |
17
|
adantl |
|- ( ( ph /\ yL e. S ) -> ( bday ` yL ) e. ( bday ` B ) ) |
19 |
|
bdayelon |
|- ( bday ` yL ) e. On |
20 |
|
bdayelon |
|- ( bday ` B ) e. On |
21 |
|
bdayelon |
|- ( bday ` A ) e. On |
22 |
|
naddel2 |
|- ( ( ( bday ` yL ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` yL ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` yL ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
23 |
19 20 21 22
|
mp3an |
|- ( ( bday ` yL ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` yL ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
24 |
18 23
|
sylib |
|- ( ( ph /\ yL e. S ) -> ( ( bday ` A ) +no ( bday ` yL ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
25 |
|
bdayelon |
|- ( bday ` ( A +s yL ) ) e. On |
26 |
|
naddcl |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` A ) +no ( bday ` B ) ) e. On ) |
27 |
21 20 26
|
mp2an |
|- ( ( bday ` A ) +no ( bday ` B ) ) e. On |
28 |
|
ontr2 |
|- ( ( ( bday ` ( A +s yL ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( bday ` ( A +s yL ) ) C_ ( ( bday ` A ) +no ( bday ` yL ) ) /\ ( ( bday ` A ) +no ( bday ` yL ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) -> ( bday ` ( A +s yL ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
29 |
25 27 28
|
mp2an |
|- ( ( ( bday ` ( A +s yL ) ) C_ ( ( bday ` A ) +no ( bday ` yL ) ) /\ ( ( bday ` A ) +no ( bday ` yL ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) -> ( bday ` ( A +s yL ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
30 |
12 24 29
|
syl2anc |
|- ( ( ph /\ yL e. S ) -> ( bday ` ( A +s yL ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
31 |
|
fveq2 |
|- ( w = ( A +s yL ) -> ( bday ` w ) = ( bday ` ( A +s yL ) ) ) |
32 |
31
|
eleq1d |
|- ( w = ( A +s yL ) -> ( ( bday ` w ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( bday ` ( A +s yL ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
33 |
30 32
|
syl5ibrcom |
|- ( ( ph /\ yL e. S ) -> ( w = ( A +s yL ) -> ( bday ` w ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
34 |
33
|
rexlimdva |
|- ( ph -> ( E. yL e. S w = ( A +s yL ) -> ( bday ` w ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
35 |
34
|
alrimiv |
|- ( ph -> A. w ( E. yL e. S w = ( A +s yL ) -> ( bday ` w ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
36 |
|
eqeq1 |
|- ( z = w -> ( z = ( A +s yL ) <-> w = ( A +s yL ) ) ) |
37 |
36
|
rexbidv |
|- ( z = w -> ( E. yL e. S z = ( A +s yL ) <-> E. yL e. S w = ( A +s yL ) ) ) |
38 |
37
|
ralab |
|- ( A. w e. { z | E. yL e. S z = ( A +s yL ) } ( bday ` w ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> A. w ( E. yL e. S w = ( A +s yL ) -> ( bday ` w ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
39 |
35 38
|
sylibr |
|- ( ph -> A. w e. { z | E. yL e. S z = ( A +s yL ) } ( bday ` w ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
40 |
|
bdayfun |
|- Fun bday |
41 |
1
|
adantr |
|- ( ( ph /\ yL e. S ) -> A e. No ) |
42 |
|
leftssno |
|- ( _Left ` B ) C_ No |
43 |
|
rightssno |
|- ( _Right ` B ) C_ No |
44 |
42 43
|
unssi |
|- ( ( _Left ` B ) u. ( _Right ` B ) ) C_ No |
45 |
3 44
|
sstri |
|- S C_ No |
46 |
45
|
sseli |
|- ( yL e. S -> yL e. No ) |
47 |
46
|
adantl |
|- ( ( ph /\ yL e. S ) -> yL e. No ) |
48 |
41 47
|
addscld |
|- ( ( ph /\ yL e. S ) -> ( A +s yL ) e. No ) |
49 |
|
eleq1 |
|- ( z = ( A +s yL ) -> ( z e. No <-> ( A +s yL ) e. No ) ) |
50 |
48 49
|
syl5ibrcom |
|- ( ( ph /\ yL e. S ) -> ( z = ( A +s yL ) -> z e. No ) ) |
51 |
50
|
rexlimdva |
|- ( ph -> ( E. yL e. S z = ( A +s yL ) -> z e. No ) ) |
52 |
51
|
abssdv |
|- ( ph -> { z | E. yL e. S z = ( A +s yL ) } C_ No ) |
53 |
|
bdaydm |
|- dom bday = No |
54 |
52 53
|
sseqtrrdi |
|- ( ph -> { z | E. yL e. S z = ( A +s yL ) } C_ dom bday ) |
55 |
|
funimass4 |
|- ( ( Fun bday /\ { z | E. yL e. S z = ( A +s yL ) } C_ dom bday ) -> ( ( bday " { z | E. yL e. S z = ( A +s yL ) } ) C_ ( ( bday ` A ) +no ( bday ` B ) ) <-> A. w e. { z | E. yL e. S z = ( A +s yL ) } ( bday ` w ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
56 |
40 54 55
|
sylancr |
|- ( ph -> ( ( bday " { z | E. yL e. S z = ( A +s yL ) } ) C_ ( ( bday ` A ) +no ( bday ` B ) ) <-> A. w e. { z | E. yL e. S z = ( A +s yL ) } ( bday ` w ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
57 |
39 56
|
mpbird |
|- ( ph -> ( bday " { z | E. yL e. S z = ( A +s yL ) } ) C_ ( ( bday ` A ) +no ( bday ` B ) ) ) |