Metamath Proof Explorer


Theorem cdleme11k

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 15-Jun-2012)

Ref Expression
Hypotheses cdleme11.l = ( le ‘ 𝐾 )
cdleme11.j = ( join ‘ 𝐾 )
cdleme11.m = ( meet ‘ 𝐾 )
cdleme11.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme11.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme11.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme11.c 𝐶 = ( ( 𝑃 𝑆 ) 𝑊 )
cdleme11.d 𝐷 = ( ( 𝑃 𝑇 ) 𝑊 )
cdleme11.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
Assertion cdleme11k ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐶 = ( ( 𝑄 𝐹 ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdleme11.l = ( le ‘ 𝐾 )
2 cdleme11.j = ( join ‘ 𝐾 )
3 cdleme11.m = ( meet ‘ 𝐾 )
4 cdleme11.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme11.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme11.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme11.c 𝐶 = ( ( 𝑃 𝑆 ) 𝑊 )
8 cdleme11.d 𝐷 = ( ( 𝑃 𝑇 ) 𝑊 )
9 cdleme11.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
10 1 2 3 4 5 6 7 6 9 cdleme11j ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐶 ( 𝑄 𝐹 ) )
11 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
12 11 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ Lat )
13 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
14 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
15 14 4 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
16 13 15 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
17 simp23l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆𝐴 )
18 14 4 atbase ( 𝑆𝐴𝑆 ∈ ( Base ‘ 𝐾 ) )
19 17 18 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) )
20 14 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
21 12 16 19 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
22 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑊𝐻 )
23 14 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
24 22 23 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
25 14 1 3 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑆 ) 𝑊 ) 𝑊 )
26 12 21 24 25 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 𝑆 ) 𝑊 ) 𝑊 )
27 7 26 eqbrtrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐶 𝑊 )
28 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
29 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
30 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
31 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
32 1 2 3 4 cdleme00a ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑆𝐴 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → 𝑆𝑃 )
33 11 13 30 17 31 32 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆𝑃 )
34 33 necomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑃𝑆 )
35 1 2 3 4 5 7 cdleme9a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑆𝐴𝑃𝑆 ) ) → 𝐶𝐴 )
36 28 29 17 34 35 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐶𝐴 )
37 14 4 atbase ( 𝐶𝐴𝐶 ∈ ( Base ‘ 𝐾 ) )
38 36 37 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐶 ∈ ( Base ‘ 𝐾 ) )
39 14 4 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
40 30 39 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
41 1 2 3 4 5 6 9 cdleme3fa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐹𝐴 )
42 14 4 atbase ( 𝐹𝐴𝐹 ∈ ( Base ‘ 𝐾 ) )
43 41 42 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) )
44 14 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 𝐹 ) ∈ ( Base ‘ 𝐾 ) )
45 12 40 43 44 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑄 𝐹 ) ∈ ( Base ‘ 𝐾 ) )
46 14 1 3 latlem12 ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐶 ( 𝑄 𝐹 ) ∧ 𝐶 𝑊 ) ↔ 𝐶 ( ( 𝑄 𝐹 ) 𝑊 ) ) )
47 12 38 45 24 46 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝐶 ( 𝑄 𝐹 ) ∧ 𝐶 𝑊 ) ↔ 𝐶 ( ( 𝑄 𝐹 ) 𝑊 ) ) )
48 10 27 47 mpbi2and ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐶 ( ( 𝑄 𝐹 ) 𝑊 ) )
49 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
50 11 49 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ AtLat )
51 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
52 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) )
53 1 2 3 4 5 6 7 6 9 cdleme11h ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑆𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐹𝑄 )
54 28 29 51 17 52 53 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐹𝑄 )
55 54 necomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑄𝐹 )
56 1 2 3 4 5 lhpat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝐹𝐴𝑄𝐹 ) ) → ( ( 𝑄 𝐹 ) 𝑊 ) ∈ 𝐴 )
57 28 51 41 55 56 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝑄 𝐹 ) 𝑊 ) ∈ 𝐴 )
58 1 4 atcmp ( ( 𝐾 ∈ AtLat ∧ 𝐶𝐴 ∧ ( ( 𝑄 𝐹 ) 𝑊 ) ∈ 𝐴 ) → ( 𝐶 ( ( 𝑄 𝐹 ) 𝑊 ) ↔ 𝐶 = ( ( 𝑄 𝐹 ) 𝑊 ) ) )
59 50 36 57 58 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝐶 ( ( 𝑄 𝐹 ) 𝑊 ) ↔ 𝐶 = ( ( 𝑄 𝐹 ) 𝑊 ) ) )
60 48 59 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐶 = ( ( 𝑄 𝐹 ) 𝑊 ) )