Metamath Proof Explorer


Theorem cdleme23b

Description: Part of proof of Lemma E in Crawley p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012)

Ref Expression
Hypotheses cdleme23.b 𝐵 = ( Base ‘ 𝐾 )
cdleme23.l = ( le ‘ 𝐾 )
cdleme23.j = ( join ‘ 𝐾 )
cdleme23.m = ( meet ‘ 𝐾 )
cdleme23.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme23.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme23.v 𝑉 = ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) )
Assertion cdleme23b ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑉𝐴 )

Proof

Step Hyp Ref Expression
1 cdleme23.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme23.l = ( le ‘ 𝐾 )
3 cdleme23.j = ( join ‘ 𝐾 )
4 cdleme23.m = ( meet ‘ 𝐾 )
5 cdleme23.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme23.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme23.v 𝑉 = ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) )
8 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ HL )
9 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
10 8 9 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ OL )
11 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑆𝐴 )
12 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑇𝐴 )
13 1 3 5 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴 ) → ( 𝑆 𝑇 ) ∈ 𝐵 )
14 8 11 12 13 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑆 𝑇 ) ∈ 𝐵 )
15 8 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ Lat )
16 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑋𝐵 )
17 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑊𝐻 )
18 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
19 17 18 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑊𝐵 )
20 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
21 15 16 19 20 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
22 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝑆 𝑇 ) ∈ 𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ∈ 𝐵 )
23 15 14 21 22 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ∈ 𝐵 )
24 1 4 latmassOLD ( ( 𝐾 ∈ OL ∧ ( ( 𝑆 𝑇 ) ∈ 𝐵 ∧ ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ∈ 𝐵𝑊𝐵 ) ) → ( ( ( 𝑆 𝑇 ) ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ) 𝑊 ) = ( ( 𝑆 𝑇 ) ( ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) 𝑊 ) ) )
25 10 14 23 19 24 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( ( 𝑆 𝑇 ) ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ) 𝑊 ) = ( ( 𝑆 𝑇 ) ( ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) 𝑊 ) ) )
26 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ ( 𝑆 𝑇 ) ∈ 𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → ( 𝑆 𝑇 ) ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) )
27 15 14 21 26 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑆 𝑇 ) ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) )
28 1 2 4 latleeqm1 ( ( 𝐾 ∈ Lat ∧ ( 𝑆 𝑇 ) ∈ 𝐵 ∧ ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ∈ 𝐵 ) → ( ( 𝑆 𝑇 ) ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ↔ ( ( 𝑆 𝑇 ) ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ) = ( 𝑆 𝑇 ) ) )
29 15 14 23 28 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆 𝑇 ) ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ↔ ( ( 𝑆 𝑇 ) ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ) = ( 𝑆 𝑇 ) ) )
30 27 29 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆 𝑇 ) ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ) = ( 𝑆 𝑇 ) )
31 30 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( ( 𝑆 𝑇 ) ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ) 𝑊 ) = ( ( 𝑆 𝑇 ) 𝑊 ) )
32 1 5 atbase ( 𝑆𝐴𝑆𝐵 )
33 11 32 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑆𝐵 )
34 1 5 atbase ( 𝑇𝐴𝑇𝐵 )
35 12 34 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑇𝐵 )
36 1 3 latjjdir ( ( 𝐾 ∈ Lat ∧ ( 𝑆𝐵𝑇𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) = ( ( 𝑆 ( 𝑋 𝑊 ) ) ( 𝑇 ( 𝑋 𝑊 ) ) ) )
37 15 33 35 21 36 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) = ( ( 𝑆 ( 𝑋 𝑊 ) ) ( 𝑇 ( 𝑋 𝑊 ) ) ) )
38 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 )
39 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 )
40 38 39 oveq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆 ( 𝑋 𝑊 ) ) ( 𝑇 ( 𝑋 𝑊 ) ) ) = ( 𝑋 𝑋 ) )
41 1 3 latjidm ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = 𝑋 )
42 15 16 41 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 𝑋 ) = 𝑋 )
43 37 40 42 3eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) = 𝑋 )
44 43 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) 𝑊 ) = ( 𝑋 𝑊 ) )
45 44 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆 𝑇 ) ( ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) 𝑊 ) ) = ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) )
46 25 31 45 3eqtr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆 𝑇 ) 𝑊 ) = ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) )
47 simp12r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑆 𝑊 )
48 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑆𝑇 )
49 2 3 4 5 6 lhpat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴𝑆𝑇 ) ) → ( ( 𝑆 𝑇 ) 𝑊 ) ∈ 𝐴 )
50 8 17 11 47 12 48 49 syl222anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆 𝑇 ) 𝑊 ) ∈ 𝐴 )
51 46 50 eqeltrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆 𝑇 ) ( 𝑋 𝑊 ) ) ∈ 𝐴 )
52 7 51 eqeltrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑆𝑇 ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑇 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑉𝐴 )