| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmatsrngpmat.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 2 |  | cpmatsrngpmat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | cpmatsrngpmat.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 5 | 1 2 3 4 | cpmatelimp | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑥  ∈  𝑆  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑖  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 6 | 1 2 3 4 | cpmatelimp | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑦  ∈  𝑆  →  ( 𝑦  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑦  ∈  𝑆  →  ( 𝑦  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 8 |  | ralcom | ⊢ ( ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ↔  ∀ 𝑗  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 9 |  | r19.26-2 | ⊢ ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  ↔  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 10 |  | ralcom | ⊢ ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  ↔  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 11 | 9 10 | bitr3i | ⊢ ( ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  ↔  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑐 ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) | 
						
							| 13 |  | nfra1 | ⊢ Ⅎ 𝑐 ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 14 | 12 13 | nfan | ⊢ Ⅎ 𝑐 ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 15 |  | simp-4r | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 17 |  | simplrl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  𝑘  ∈  𝑁 ) | 
						
							| 19 |  | simplrl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑥  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  𝑥  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 21 | 3 16 4 17 18 20 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑖 𝑥 𝑘 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 22 |  | simplrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 23 |  | simplrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑦  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  𝑦  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 25 | 3 16 4 18 22 24 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑘 𝑦 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 26 | 15 21 25 | jca32 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  ( ( 𝑖 𝑥 𝑘 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑘 𝑦 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 27 | 26 | adantlr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  ∧  𝑘  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  ( ( 𝑖 𝑥 𝑘 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑘 𝑦 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑙  =  𝑘  →  ( 𝑖 𝑥 𝑙 )  =  ( 𝑖 𝑥 𝑘 ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝑙  =  𝑘  →  ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) )  =  ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ) | 
						
							| 30 | 29 | fveq1d | ⊢ ( 𝑙  =  𝑘  →  ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) ) | 
						
							| 31 | 30 | eqeq1d | ⊢ ( 𝑙  =  𝑘  →  ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ↔  ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 32 |  | fvoveq1 | ⊢ ( 𝑙  =  𝑘  →  ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) )  =  ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ) | 
						
							| 33 | 32 | fveq1d | ⊢ ( 𝑙  =  𝑘  →  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) ) | 
						
							| 34 | 33 | eqeq1d | ⊢ ( 𝑙  =  𝑘  →  ( ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ↔  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 35 | 31 34 | anbi12d | ⊢ ( 𝑙  =  𝑘  →  ( ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  ↔  ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 36 | 35 | rspcva | ⊢ ( ( 𝑘  ∈  𝑁  ∧  ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 37 | 36 | a1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑐  ∈  ℕ )  →  ( ( 𝑘  ∈  𝑁  ∧  ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 38 | 37 | exp4b | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑐  ∈  ℕ  →  ( 𝑘  ∈  𝑁  →  ( ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 39 | 38 | com23 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑘  ∈  𝑁  →  ( 𝑐  ∈  ℕ  →  ( ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 40 | 39 | imp31 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  ∧  𝑐  ∈  ℕ )  →  ( ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 41 | 40 | ralimdva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  ( ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑐  ∈  ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 42 | 41 | impancom | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  →  ( 𝑘  ∈  𝑁  →  ∀ 𝑐  ∈  ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 43 | 42 | imp | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  ∧  𝑘  ∈  𝑁 )  →  ∀ 𝑐  ∈  ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 44 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 45 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 46 | 2 16 44 45 | cply1mul | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑖 𝑥 𝑘 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑘 𝑦 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) )  →  ( ∀ 𝑐  ∈  ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 47 | 27 43 46 | sylc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  ∧  𝑘  ∈  𝑁 )  →  ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 48 | 47 | r19.21bi | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  ∧  𝑘  ∈  𝑁 )  ∧  𝑐  ∈  ℕ )  →  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 49 | 48 | an32s | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  ∧  𝑐  ∈  ℕ )  ∧  𝑘  ∈  𝑁 )  →  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 50 | 49 | mpteq2dva | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  ∧  𝑐  ∈  ℕ )  →  ( 𝑘  ∈  𝑁  ↦  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) )  =  ( 𝑘  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  ∧  𝑐  ∈  ℕ )  →  ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) )  =  ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 52 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 53 | 52 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Mnd ) ) | 
						
							| 54 | 53 | ancomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑅  ∈  Mnd  ∧  𝑁  ∈  Fin ) ) | 
						
							| 55 | 44 | gsumz | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑁  ∈  Fin )  →  ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 57 | 56 | ad4antr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  ∧  𝑐  ∈  ℕ )  →  ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 58 | 51 57 | eqtrd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  ∧  𝑐  ∈  ℕ )  →  ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 59 | 58 | ex | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  →  ( 𝑐  ∈  ℕ  →  ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 60 | 14 59 | ralrimi | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  →  ∀ 𝑐  ∈  ℕ ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 61 |  | simp-4r | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑐  ∈  ℕ )  →  𝑅  ∈  Ring ) | 
						
							| 62 |  | nnnn0 | ⊢ ( 𝑐  ∈  ℕ  →  𝑐  ∈  ℕ0 ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑐  ∈  ℕ )  →  𝑐  ∈  ℕ0 ) | 
						
							| 64 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 65 | 64 | ad4antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  𝑃  ∈  Ring ) | 
						
							| 66 | 16 45 | ringcl | ⊢ ( ( 𝑃  ∈  Ring  ∧  ( 𝑖 𝑥 𝑘 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑘 𝑦 𝑗 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 67 | 65 21 25 66 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑘  ∈  𝑁 )  →  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 68 | 67 | ralrimiva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ∀ 𝑘  ∈  𝑁 ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑐  ∈  ℕ )  →  ∀ 𝑘  ∈  𝑁 ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 70 |  | simp-4l | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑐  ∈  ℕ )  →  𝑁  ∈  Fin ) | 
						
							| 71 | 2 16 61 63 69 70 | coe1fzgsumd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑐  ∈  ℕ )  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) ) ) | 
						
							| 72 | 71 | eqeq1d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑐  ∈  ℕ )  →  ( ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ↔  ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 73 | 72 | ralbidva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ↔  ∀ 𝑐  ∈  ℕ ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  →  ( ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ↔  ∀ 𝑐  ∈  ℕ ( 𝑅  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 75 | 60 74 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) )  →  ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 76 | 75 | ex | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ∀ 𝑐  ∈  ℕ ∀ 𝑙  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 77 | 11 76 | biimtrid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 78 | 77 | expd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 79 | 78 | expr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑖  ∈  𝑁 )  →  ( 𝑗  ∈  𝑁  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 80 | 79 | com23 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑖  ∈  𝑁 )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ( 𝑗  ∈  𝑁  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 81 | 80 | imp31 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑖  ∈  𝑁 )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  ∧  𝑗  ∈  𝑁 )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 82 | 81 | ralimdva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑖  ∈  𝑁 )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ( ∀ 𝑗  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 83 | 8 82 | biimtrid | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑖  ∈  𝑁 )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 84 | 83 | ex | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑖  ∈  𝑁 )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 85 | 84 | com23 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  𝑖  ∈  𝑁 )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 86 | 85 | impancom | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑖  ∈  𝑁  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 87 | 86 | imp | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  ∧  𝑖  ∈  𝑁 )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 88 | 87 | ralimdva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 89 | 88 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) ) )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 90 | 89 | expr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑦  ∈  ( Base ‘ 𝐶 )  →  ( ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 91 | 90 | impd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( ( 𝑦  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑙  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 92 | 7 91 | syld | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑦  ∈  𝑆  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 93 | 92 | com23 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ( 𝑦  ∈  𝑆  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 94 | 93 | ex | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 )  →  ( 𝑦  ∈  𝑆  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 95 | 94 | impd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  ∀ 𝑖  ∈  𝑁 ∀ 𝑙  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑦  ∈  𝑆  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 96 | 5 95 | syld | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑥  ∈  𝑆  →  ( 𝑦  ∈  𝑆  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 97 | 96 | imp32 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∀ 𝑐  ∈  ℕ ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  𝑁  ↦  ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 )  =  ( 0g ‘ 𝑅 ) ) |