| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmatsrngpmat.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
| 2 |
|
cpmatsrngpmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
cpmatsrngpmat.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 5 |
1 2 3 4
|
cpmatelimp |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 6 |
1 2 3 4
|
cpmatelimp |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑦 ∈ 𝑆 → ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ 𝑆 → ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 8 |
|
ralcom |
⊢ ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑗 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 9 |
|
r19.26-2 |
⊢ ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ↔ ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 10 |
|
ralcom |
⊢ ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 11 |
9 10
|
bitr3i |
⊢ ( ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ↔ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑐 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) |
| 13 |
|
nfra1 |
⊢ Ⅎ 𝑐 ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 14 |
12 13
|
nfan |
⊢ Ⅎ 𝑐 ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 15 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 17 |
|
simplrl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 18 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
| 19 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 21 |
3 16 4 17 18 20
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑖 𝑥 𝑘 ) ∈ ( Base ‘ 𝑃 ) ) |
| 22 |
|
simplrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 23 |
|
simplrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 25 |
3 16 4 18 22 24
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 𝑦 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
| 26 |
15 21 25
|
jca32 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑅 ∈ Ring ∧ ( ( 𝑖 𝑥 𝑘 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑘 𝑦 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) ) ) |
| 27 |
26
|
adantlr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑅 ∈ Ring ∧ ( ( 𝑖 𝑥 𝑘 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑘 𝑦 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑖 𝑥 𝑙 ) = ( 𝑖 𝑥 𝑘 ) ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝑙 = 𝑘 → ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) = ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ) |
| 30 |
29
|
fveq1d |
⊢ ( 𝑙 = 𝑘 → ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) ) |
| 31 |
30
|
eqeq1d |
⊢ ( 𝑙 = 𝑘 → ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ↔ ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 32 |
|
fvoveq1 |
⊢ ( 𝑙 = 𝑘 → ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) = ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ) |
| 33 |
32
|
fveq1d |
⊢ ( 𝑙 = 𝑘 → ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) ) |
| 34 |
33
|
eqeq1d |
⊢ ( 𝑙 = 𝑘 → ( ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ↔ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 35 |
31 34
|
anbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ↔ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 36 |
35
|
rspcva |
⊢ ( ( 𝑘 ∈ 𝑁 ∧ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 37 |
36
|
a1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑐 ∈ ℕ ) → ( ( 𝑘 ∈ 𝑁 ∧ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 38 |
37
|
exp4b |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑐 ∈ ℕ → ( 𝑘 ∈ 𝑁 → ( ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) ) ) |
| 39 |
38
|
com23 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑘 ∈ 𝑁 → ( 𝑐 ∈ ℕ → ( ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) ) ) |
| 40 |
39
|
imp31 |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) ∧ 𝑐 ∈ ℕ ) → ( ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 41 |
40
|
ralimdva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑐 ∈ ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 42 |
41
|
impancom |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑘 ∈ 𝑁 → ∀ 𝑐 ∈ ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ∀ 𝑐 ∈ ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 44 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 45 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 46 |
2 16 44 45
|
cply1mul |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑖 𝑥 𝑘 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑘 𝑦 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) ) → ( ∀ 𝑐 ∈ ℕ ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑘 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑘 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 47 |
27 43 46
|
sylc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 48 |
47
|
r19.21bi |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑘 ∈ 𝑁 ) ∧ 𝑐 ∈ ℕ ) → ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 49 |
48
|
an32s |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑐 ∈ ℕ ) ∧ 𝑘 ∈ 𝑁 ) → ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 50 |
49
|
mpteq2dva |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑐 ∈ ℕ ) → ( 𝑘 ∈ 𝑁 ↦ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) = ( 𝑘 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 51 |
50
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑐 ∈ ℕ ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) ) |
| 52 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
| 53 |
52
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd ) ) |
| 54 |
53
|
ancomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin ) ) |
| 55 |
44
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 57 |
56
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑐 ∈ ℕ ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 58 |
51 57
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ∧ 𝑐 ∈ ℕ ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 59 |
58
|
ex |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) → ( 𝑐 ∈ ℕ → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 60 |
14 59
|
ralrimi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) → ∀ 𝑐 ∈ ℕ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 61 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑐 ∈ ℕ ) → 𝑅 ∈ Ring ) |
| 62 |
|
nnnn0 |
⊢ ( 𝑐 ∈ ℕ → 𝑐 ∈ ℕ0 ) |
| 63 |
62
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑐 ∈ ℕ ) → 𝑐 ∈ ℕ0 ) |
| 64 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 65 |
64
|
ad4antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → 𝑃 ∈ Ring ) |
| 66 |
16 45
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝑖 𝑥 𝑘 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑘 𝑦 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 67 |
65 21 25 66
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 68 |
67
|
ralrimiva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ∀ 𝑘 ∈ 𝑁 ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑐 ∈ ℕ ) → ∀ 𝑘 ∈ 𝑁 ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 70 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑐 ∈ ℕ ) → 𝑁 ∈ Fin ) |
| 71 |
2 16 61 63 69 70
|
coe1fzgsumd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑐 ∈ ℕ ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) ) ) |
| 72 |
71
|
eqeq1d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑐 ∈ ℕ ) → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 73 |
72
|
ralbidva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑐 ∈ ℕ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 74 |
73
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) → ( ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑐 ∈ ℕ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( coe1 ‘ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ‘ 𝑐 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 75 |
60 74
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
| 76 |
75
|
ex |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ∀ 𝑐 ∈ ℕ ∀ 𝑙 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 77 |
11 76
|
biimtrid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 78 |
77
|
expd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 79 |
78
|
expr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝑗 ∈ 𝑁 → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
| 80 |
79
|
com23 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑖 ∈ 𝑁 ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ( 𝑗 ∈ 𝑁 → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
| 81 |
80
|
imp31 |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑖 ∈ 𝑁 ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 82 |
81
|
ralimdva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑖 ∈ 𝑁 ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ( ∀ 𝑗 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 83 |
8 82
|
biimtrid |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑖 ∈ 𝑁 ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 84 |
83
|
ex |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑖 ∈ 𝑁 ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 85 |
84
|
com23 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑖 ∈ 𝑁 ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 86 |
85
|
impancom |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑖 ∈ 𝑁 → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 87 |
86
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝑁 ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 88 |
87
|
ralimdva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) |
| 89 |
88
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 90 |
89
|
expr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
| 91 |
90
|
impd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑙 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑙 𝑦 𝑗 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 92 |
7 91
|
syld |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ 𝑆 → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 93 |
92
|
com23 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 ∈ 𝑆 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 94 |
93
|
ex |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 ∈ 𝑆 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
| 95 |
94
|
impd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑙 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑥 𝑙 ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ∈ 𝑆 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 96 |
5 95
|
syld |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ 𝑆 → ( 𝑦 ∈ 𝑆 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 97 |
96
|
imp32 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑘 ) ( .r ‘ 𝑃 ) ( 𝑘 𝑦 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |