Metamath Proof Explorer


Theorem dvdsrval

Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses dvdsr.1 𝐵 = ( Base ‘ 𝑅 )
dvdsr.2 = ( ∥r𝑅 )
dvdsr.3 · = ( .r𝑅 )
Assertion dvdsrval = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) }

Proof

Step Hyp Ref Expression
1 dvdsr.1 𝐵 = ( Base ‘ 𝑅 )
2 dvdsr.2 = ( ∥r𝑅 )
3 dvdsr.3 · = ( .r𝑅 )
4 fveq2 ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
5 4 1 eqtr4di ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 )
6 5 eleq2d ( 𝑟 = 𝑅 → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↔ 𝑥𝐵 ) )
7 5 rexeqdv ( 𝑟 = 𝑅 → ( ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r𝑟 ) 𝑥 ) = 𝑦 ↔ ∃ 𝑧𝐵 ( 𝑧 ( .r𝑟 ) 𝑥 ) = 𝑦 ) )
8 6 7 anbi12d ( 𝑟 = 𝑅 → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r𝑟 ) 𝑥 ) = 𝑦 ) ↔ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 ( .r𝑟 ) 𝑥 ) = 𝑦 ) ) )
9 fveq2 ( 𝑟 = 𝑅 → ( .r𝑟 ) = ( .r𝑅 ) )
10 9 3 eqtr4di ( 𝑟 = 𝑅 → ( .r𝑟 ) = · )
11 10 oveqd ( 𝑟 = 𝑅 → ( 𝑧 ( .r𝑟 ) 𝑥 ) = ( 𝑧 · 𝑥 ) )
12 11 eqeq1d ( 𝑟 = 𝑅 → ( ( 𝑧 ( .r𝑟 ) 𝑥 ) = 𝑦 ↔ ( 𝑧 · 𝑥 ) = 𝑦 ) )
13 12 rexbidv ( 𝑟 = 𝑅 → ( ∃ 𝑧𝐵 ( 𝑧 ( .r𝑟 ) 𝑥 ) = 𝑦 ↔ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) )
14 13 anbi2d ( 𝑟 = 𝑅 → ( ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 ( .r𝑟 ) 𝑥 ) = 𝑦 ) ↔ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ) )
15 8 14 bitrd ( 𝑟 = 𝑅 → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r𝑟 ) 𝑥 ) = 𝑦 ) ↔ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ) )
16 15 opabbidv ( 𝑟 = 𝑅 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r𝑟 ) 𝑥 ) = 𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } )
17 df-dvdsr r = ( 𝑟 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r𝑟 ) 𝑥 ) = 𝑦 ) } )
18 1 fvexi 𝐵 ∈ V
19 eqcom ( ( 𝑧 · 𝑥 ) = 𝑦𝑦 = ( 𝑧 · 𝑥 ) )
20 19 rexbii ( ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ↔ ∃ 𝑧𝐵 𝑦 = ( 𝑧 · 𝑥 ) )
21 20 abbii { 𝑦 ∣ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 } = { 𝑦 ∣ ∃ 𝑧𝐵 𝑦 = ( 𝑧 · 𝑥 ) }
22 18 abrexex { 𝑦 ∣ ∃ 𝑧𝐵 𝑦 = ( 𝑧 · 𝑥 ) } ∈ V
23 21 22 eqeltri { 𝑦 ∣ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 } ∈ V
24 23 a1i ( 𝑥𝐵 → { 𝑦 ∣ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 } ∈ V )
25 18 24 opabex3 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ∈ V
26 16 17 25 fvmpt ( 𝑅 ∈ V → ( ∥r𝑅 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } )
27 2 26 syl5eq ( 𝑅 ∈ V → = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } )
28 fvprc ( ¬ 𝑅 ∈ V → ( ∥r𝑅 ) = ∅ )
29 2 28 syl5eq ( ¬ 𝑅 ∈ V → = ∅ )
30 opabn0 ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ≠ ∅ ↔ ∃ 𝑥𝑦 ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) )
31 n0i ( 𝑥𝐵 → ¬ 𝐵 = ∅ )
32 fvprc ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ )
33 1 32 syl5eq ( ¬ 𝑅 ∈ V → 𝐵 = ∅ )
34 31 33 nsyl2 ( 𝑥𝐵𝑅 ∈ V )
35 34 adantr ( ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑅 ∈ V )
36 35 exlimivv ( ∃ 𝑥𝑦 ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑅 ∈ V )
37 30 36 sylbi ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ≠ ∅ → 𝑅 ∈ V )
38 37 necon1bi ( ¬ 𝑅 ∈ V → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } = ∅ )
39 29 38 eqtr4d ( ¬ 𝑅 ∈ V → = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } )
40 27 39 pm2.61i = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) }