Metamath Proof Explorer


Theorem elqaalem1

Description: Lemma for elqaa . The function N represents the denominators of the rational coefficients B . By multiplying them all together to make R , we get a number big enough to clear all the denominators and make R x. F an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses elqaa.1 ( 𝜑𝐴 ∈ ℂ )
elqaa.2 ( 𝜑𝐹 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) )
elqaa.3 ( 𝜑 → ( 𝐹𝐴 ) = 0 )
elqaa.4 𝐵 = ( coeff ‘ 𝐹 )
elqaa.5 𝑁 = ( 𝑘 ∈ ℕ0 ↦ inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) )
elqaa.6 𝑅 = ( seq 0 ( · , 𝑁 ) ‘ ( deg ‘ 𝐹 ) )
Assertion elqaalem1 ( ( 𝜑𝐾 ∈ ℕ0 ) → ( ( 𝑁𝐾 ) ∈ ℕ ∧ ( ( 𝐵𝐾 ) · ( 𝑁𝐾 ) ) ∈ ℤ ) )

Proof

Step Hyp Ref Expression
1 elqaa.1 ( 𝜑𝐴 ∈ ℂ )
2 elqaa.2 ( 𝜑𝐹 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) )
3 elqaa.3 ( 𝜑 → ( 𝐹𝐴 ) = 0 )
4 elqaa.4 𝐵 = ( coeff ‘ 𝐹 )
5 elqaa.5 𝑁 = ( 𝑘 ∈ ℕ0 ↦ inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) )
6 elqaa.6 𝑅 = ( seq 0 ( · , 𝑁 ) ‘ ( deg ‘ 𝐹 ) )
7 fveq2 ( 𝑘 = 𝐾 → ( 𝐵𝑘 ) = ( 𝐵𝐾 ) )
8 7 oveq1d ( 𝑘 = 𝐾 → ( ( 𝐵𝑘 ) · 𝑛 ) = ( ( 𝐵𝐾 ) · 𝑛 ) )
9 8 eleq1d ( 𝑘 = 𝐾 → ( ( ( 𝐵𝑘 ) · 𝑛 ) ∈ ℤ ↔ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ ) )
10 9 rabbidv ( 𝑘 = 𝐾 → { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝑘 ) · 𝑛 ) ∈ ℤ } = { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } )
11 10 infeq1d ( 𝑘 = 𝐾 → inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) )
12 ltso < Or ℝ
13 12 infex inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ∈ V
14 11 5 13 fvmpt ( 𝐾 ∈ ℕ0 → ( 𝑁𝐾 ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) )
15 14 adantl ( ( 𝜑𝐾 ∈ ℕ0 ) → ( 𝑁𝐾 ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) )
16 ssrab2 { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } ⊆ ℕ
17 nnuz ℕ = ( ℤ ‘ 1 )
18 16 17 sseqtri { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } ⊆ ( ℤ ‘ 1 )
19 2 eldifad ( 𝜑𝐹 ∈ ( Poly ‘ ℚ ) )
20 0z 0 ∈ ℤ
21 zq ( 0 ∈ ℤ → 0 ∈ ℚ )
22 20 21 ax-mp 0 ∈ ℚ
23 4 coef2 ( ( 𝐹 ∈ ( Poly ‘ ℚ ) ∧ 0 ∈ ℚ ) → 𝐵 : ℕ0 ⟶ ℚ )
24 19 22 23 sylancl ( 𝜑𝐵 : ℕ0 ⟶ ℚ )
25 24 ffvelrnda ( ( 𝜑𝐾 ∈ ℕ0 ) → ( 𝐵𝐾 ) ∈ ℚ )
26 qmulz ( ( 𝐵𝐾 ) ∈ ℚ → ∃ 𝑛 ∈ ℕ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ )
27 25 26 syl ( ( 𝜑𝐾 ∈ ℕ0 ) → ∃ 𝑛 ∈ ℕ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ )
28 rabn0 ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ )
29 27 28 sylibr ( ( 𝜑𝐾 ∈ ℕ0 ) → { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } ≠ ∅ )
30 infssuzcl ( ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } ⊆ ( ℤ ‘ 1 ) ∧ { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } )
31 18 29 30 sylancr ( ( 𝜑𝐾 ∈ ℕ0 ) → inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } )
32 15 31 eqeltrd ( ( 𝜑𝐾 ∈ ℕ0 ) → ( 𝑁𝐾 ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } )
33 oveq2 ( 𝑛 = ( 𝑁𝐾 ) → ( ( 𝐵𝐾 ) · 𝑛 ) = ( ( 𝐵𝐾 ) · ( 𝑁𝐾 ) ) )
34 33 eleq1d ( 𝑛 = ( 𝑁𝐾 ) → ( ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ ↔ ( ( 𝐵𝐾 ) · ( 𝑁𝐾 ) ) ∈ ℤ ) )
35 34 elrab ( ( 𝑁𝐾 ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵𝐾 ) · 𝑛 ) ∈ ℤ } ↔ ( ( 𝑁𝐾 ) ∈ ℕ ∧ ( ( 𝐵𝐾 ) · ( 𝑁𝐾 ) ) ∈ ℤ ) )
36 32 35 sylib ( ( 𝜑𝐾 ∈ ℕ0 ) → ( ( 𝑁𝐾 ) ∈ ℕ ∧ ( ( 𝐵𝐾 ) · ( 𝑁𝐾 ) ) ∈ ℤ ) )