Step |
Hyp |
Ref |
Expression |
1 |
|
elqaa.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
elqaa.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) |
3 |
|
elqaa.3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 0 ) |
4 |
|
elqaa.4 |
⊢ 𝐵 = ( coeff ‘ 𝐹 ) |
5 |
|
elqaa.5 |
⊢ 𝑁 = ( 𝑘 ∈ ℕ0 ↦ inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
6 |
|
elqaa.6 |
⊢ 𝑅 = ( seq 0 ( · , 𝑁 ) ‘ ( deg ‘ 𝐹 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝐾 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) = ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ ↔ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ ) ) |
10 |
9
|
rabbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } = { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ) |
11 |
10
|
infeq1d |
⊢ ( 𝑘 = 𝐾 → inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
12 |
|
ltso |
⊢ < Or ℝ |
13 |
12
|
infex |
⊢ inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ∈ V |
14 |
11 5 13
|
fvmpt |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝑁 ‘ 𝐾 ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 ‘ 𝐾 ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
16 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ⊆ ℕ |
17 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
18 |
16 17
|
sseqtri |
⊢ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ⊆ ( ℤ≥ ‘ 1 ) |
19 |
2
|
eldifad |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℚ ) ) |
20 |
|
0z |
⊢ 0 ∈ ℤ |
21 |
|
zq |
⊢ ( 0 ∈ ℤ → 0 ∈ ℚ ) |
22 |
20 21
|
ax-mp |
⊢ 0 ∈ ℚ |
23 |
4
|
coef2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℚ ) ∧ 0 ∈ ℚ ) → 𝐵 : ℕ0 ⟶ ℚ ) |
24 |
19 22 23
|
sylancl |
⊢ ( 𝜑 → 𝐵 : ℕ0 ⟶ ℚ ) |
25 |
24
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐵 ‘ 𝐾 ) ∈ ℚ ) |
26 |
|
qmulz |
⊢ ( ( 𝐵 ‘ 𝐾 ) ∈ ℚ → ∃ 𝑛 ∈ ℕ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ ) |
27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ∃ 𝑛 ∈ ℕ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ ) |
28 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ ) |
29 |
27 28
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ≠ ∅ ) |
30 |
|
infssuzcl |
⊢ ( ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ) |
31 |
18 29 30
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ) |
32 |
15 31
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 ‘ 𝐾 ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ) |
33 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑁 ‘ 𝐾 ) → ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) = ( ( 𝐵 ‘ 𝐾 ) · ( 𝑁 ‘ 𝐾 ) ) ) |
34 |
33
|
eleq1d |
⊢ ( 𝑛 = ( 𝑁 ‘ 𝐾 ) → ( ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ ↔ ( ( 𝐵 ‘ 𝐾 ) · ( 𝑁 ‘ 𝐾 ) ) ∈ ℤ ) ) |
35 |
34
|
elrab |
⊢ ( ( 𝑁 ‘ 𝐾 ) ∈ { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝐾 ) · 𝑛 ) ∈ ℤ } ↔ ( ( 𝑁 ‘ 𝐾 ) ∈ ℕ ∧ ( ( 𝐵 ‘ 𝐾 ) · ( 𝑁 ‘ 𝐾 ) ) ∈ ℤ ) ) |
36 |
32 35
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑁 ‘ 𝐾 ) ∈ ℕ ∧ ( ( 𝐵 ‘ 𝐾 ) · ( 𝑁 ‘ 𝐾 ) ) ∈ ℤ ) ) |