Step |
Hyp |
Ref |
Expression |
1 |
|
elqaa.1 |
|- ( ph -> A e. CC ) |
2 |
|
elqaa.2 |
|- ( ph -> F e. ( ( Poly ` QQ ) \ { 0p } ) ) |
3 |
|
elqaa.3 |
|- ( ph -> ( F ` A ) = 0 ) |
4 |
|
elqaa.4 |
|- B = ( coeff ` F ) |
5 |
|
elqaa.5 |
|- N = ( k e. NN0 |-> inf ( { n e. NN | ( ( B ` k ) x. n ) e. ZZ } , RR , < ) ) |
6 |
|
elqaa.6 |
|- R = ( seq 0 ( x. , N ) ` ( deg ` F ) ) |
7 |
|
fveq2 |
|- ( k = K -> ( B ` k ) = ( B ` K ) ) |
8 |
7
|
oveq1d |
|- ( k = K -> ( ( B ` k ) x. n ) = ( ( B ` K ) x. n ) ) |
9 |
8
|
eleq1d |
|- ( k = K -> ( ( ( B ` k ) x. n ) e. ZZ <-> ( ( B ` K ) x. n ) e. ZZ ) ) |
10 |
9
|
rabbidv |
|- ( k = K -> { n e. NN | ( ( B ` k ) x. n ) e. ZZ } = { n e. NN | ( ( B ` K ) x. n ) e. ZZ } ) |
11 |
10
|
infeq1d |
|- ( k = K -> inf ( { n e. NN | ( ( B ` k ) x. n ) e. ZZ } , RR , < ) = inf ( { n e. NN | ( ( B ` K ) x. n ) e. ZZ } , RR , < ) ) |
12 |
|
ltso |
|- < Or RR |
13 |
12
|
infex |
|- inf ( { n e. NN | ( ( B ` K ) x. n ) e. ZZ } , RR , < ) e. _V |
14 |
11 5 13
|
fvmpt |
|- ( K e. NN0 -> ( N ` K ) = inf ( { n e. NN | ( ( B ` K ) x. n ) e. ZZ } , RR , < ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ K e. NN0 ) -> ( N ` K ) = inf ( { n e. NN | ( ( B ` K ) x. n ) e. ZZ } , RR , < ) ) |
16 |
|
ssrab2 |
|- { n e. NN | ( ( B ` K ) x. n ) e. ZZ } C_ NN |
17 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
18 |
16 17
|
sseqtri |
|- { n e. NN | ( ( B ` K ) x. n ) e. ZZ } C_ ( ZZ>= ` 1 ) |
19 |
2
|
eldifad |
|- ( ph -> F e. ( Poly ` QQ ) ) |
20 |
|
0z |
|- 0 e. ZZ |
21 |
|
zq |
|- ( 0 e. ZZ -> 0 e. QQ ) |
22 |
20 21
|
ax-mp |
|- 0 e. QQ |
23 |
4
|
coef2 |
|- ( ( F e. ( Poly ` QQ ) /\ 0 e. QQ ) -> B : NN0 --> QQ ) |
24 |
19 22 23
|
sylancl |
|- ( ph -> B : NN0 --> QQ ) |
25 |
24
|
ffvelrnda |
|- ( ( ph /\ K e. NN0 ) -> ( B ` K ) e. QQ ) |
26 |
|
qmulz |
|- ( ( B ` K ) e. QQ -> E. n e. NN ( ( B ` K ) x. n ) e. ZZ ) |
27 |
25 26
|
syl |
|- ( ( ph /\ K e. NN0 ) -> E. n e. NN ( ( B ` K ) x. n ) e. ZZ ) |
28 |
|
rabn0 |
|- ( { n e. NN | ( ( B ` K ) x. n ) e. ZZ } =/= (/) <-> E. n e. NN ( ( B ` K ) x. n ) e. ZZ ) |
29 |
27 28
|
sylibr |
|- ( ( ph /\ K e. NN0 ) -> { n e. NN | ( ( B ` K ) x. n ) e. ZZ } =/= (/) ) |
30 |
|
infssuzcl |
|- ( ( { n e. NN | ( ( B ` K ) x. n ) e. ZZ } C_ ( ZZ>= ` 1 ) /\ { n e. NN | ( ( B ` K ) x. n ) e. ZZ } =/= (/) ) -> inf ( { n e. NN | ( ( B ` K ) x. n ) e. ZZ } , RR , < ) e. { n e. NN | ( ( B ` K ) x. n ) e. ZZ } ) |
31 |
18 29 30
|
sylancr |
|- ( ( ph /\ K e. NN0 ) -> inf ( { n e. NN | ( ( B ` K ) x. n ) e. ZZ } , RR , < ) e. { n e. NN | ( ( B ` K ) x. n ) e. ZZ } ) |
32 |
15 31
|
eqeltrd |
|- ( ( ph /\ K e. NN0 ) -> ( N ` K ) e. { n e. NN | ( ( B ` K ) x. n ) e. ZZ } ) |
33 |
|
oveq2 |
|- ( n = ( N ` K ) -> ( ( B ` K ) x. n ) = ( ( B ` K ) x. ( N ` K ) ) ) |
34 |
33
|
eleq1d |
|- ( n = ( N ` K ) -> ( ( ( B ` K ) x. n ) e. ZZ <-> ( ( B ` K ) x. ( N ` K ) ) e. ZZ ) ) |
35 |
34
|
elrab |
|- ( ( N ` K ) e. { n e. NN | ( ( B ` K ) x. n ) e. ZZ } <-> ( ( N ` K ) e. NN /\ ( ( B ` K ) x. ( N ` K ) ) e. ZZ ) ) |
36 |
32 35
|
sylib |
|- ( ( ph /\ K e. NN0 ) -> ( ( N ` K ) e. NN /\ ( ( B ` K ) x. ( N ` K ) ) e. ZZ ) ) |