| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elqaa.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
elqaa.2 |
|- ( ph -> F e. ( ( Poly ` QQ ) \ { 0p } ) ) |
| 3 |
|
elqaa.3 |
|- ( ph -> ( F ` A ) = 0 ) |
| 4 |
|
elqaa.4 |
|- B = ( coeff ` F ) |
| 5 |
|
elqaa.5 |
|- N = ( k e. NN0 |-> inf ( { n e. NN | ( ( B ` k ) x. n ) e. ZZ } , RR , < ) ) |
| 6 |
|
elqaa.6 |
|- R = ( seq 0 ( x. , N ) ` ( deg ` F ) ) |
| 7 |
|
elqaa.7 |
|- P = ( x e. _V , y e. _V |-> ( ( x x. y ) mod ( N ` K ) ) ) |
| 8 |
|
elfznn0 |
|- ( K e. ( 0 ... ( deg ` F ) ) -> K e. NN0 ) |
| 9 |
6
|
fveq2i |
|- ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` R ) = ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` ( seq 0 ( x. , N ) ` ( deg ` F ) ) ) |
| 10 |
|
nnmulcl |
|- ( ( i e. NN /\ j e. NN ) -> ( i x. j ) e. NN ) |
| 11 |
10
|
adantl |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( i x. j ) e. NN ) |
| 12 |
|
elfznn0 |
|- ( i e. ( 0 ... ( deg ` F ) ) -> i e. NN0 ) |
| 13 |
1 2 3 4 5 6
|
elqaalem1 |
|- ( ( ph /\ i e. NN0 ) -> ( ( N ` i ) e. NN /\ ( ( B ` i ) x. ( N ` i ) ) e. ZZ ) ) |
| 14 |
13
|
simpld |
|- ( ( ph /\ i e. NN0 ) -> ( N ` i ) e. NN ) |
| 15 |
14
|
adantlr |
|- ( ( ( ph /\ K e. NN0 ) /\ i e. NN0 ) -> ( N ` i ) e. NN ) |
| 16 |
12 15
|
sylan2 |
|- ( ( ( ph /\ K e. NN0 ) /\ i e. ( 0 ... ( deg ` F ) ) ) -> ( N ` i ) e. NN ) |
| 17 |
|
eldifi |
|- ( F e. ( ( Poly ` QQ ) \ { 0p } ) -> F e. ( Poly ` QQ ) ) |
| 18 |
|
dgrcl |
|- ( F e. ( Poly ` QQ ) -> ( deg ` F ) e. NN0 ) |
| 19 |
2 17 18
|
3syl |
|- ( ph -> ( deg ` F ) e. NN0 ) |
| 20 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 21 |
19 20
|
eleqtrdi |
|- ( ph -> ( deg ` F ) e. ( ZZ>= ` 0 ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ K e. NN0 ) -> ( deg ` F ) e. ( ZZ>= ` 0 ) ) |
| 23 |
|
nnz |
|- ( i e. NN -> i e. ZZ ) |
| 24 |
23
|
ad2antrl |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> i e. ZZ ) |
| 25 |
1 2 3 4 5 6
|
elqaalem1 |
|- ( ( ph /\ K e. NN0 ) -> ( ( N ` K ) e. NN /\ ( ( B ` K ) x. ( N ` K ) ) e. ZZ ) ) |
| 26 |
25
|
simpld |
|- ( ( ph /\ K e. NN0 ) -> ( N ` K ) e. NN ) |
| 27 |
26
|
adantr |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( N ` K ) e. NN ) |
| 28 |
24 27
|
zmodcld |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( i mod ( N ` K ) ) e. NN0 ) |
| 29 |
28
|
nn0zd |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( i mod ( N ` K ) ) e. ZZ ) |
| 30 |
|
nnz |
|- ( j e. NN -> j e. ZZ ) |
| 31 |
30
|
ad2antll |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> j e. ZZ ) |
| 32 |
31 27
|
zmodcld |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( j mod ( N ` K ) ) e. NN0 ) |
| 33 |
32
|
nn0zd |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( j mod ( N ` K ) ) e. ZZ ) |
| 34 |
27
|
nnrpd |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( N ` K ) e. RR+ ) |
| 35 |
|
nnre |
|- ( i e. NN -> i e. RR ) |
| 36 |
35
|
ad2antrl |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> i e. RR ) |
| 37 |
|
modabs2 |
|- ( ( i e. RR /\ ( N ` K ) e. RR+ ) -> ( ( i mod ( N ` K ) ) mod ( N ` K ) ) = ( i mod ( N ` K ) ) ) |
| 38 |
36 34 37
|
syl2anc |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( i mod ( N ` K ) ) mod ( N ` K ) ) = ( i mod ( N ` K ) ) ) |
| 39 |
|
nnre |
|- ( j e. NN -> j e. RR ) |
| 40 |
39
|
ad2antll |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> j e. RR ) |
| 41 |
|
modabs2 |
|- ( ( j e. RR /\ ( N ` K ) e. RR+ ) -> ( ( j mod ( N ` K ) ) mod ( N ` K ) ) = ( j mod ( N ` K ) ) ) |
| 42 |
40 34 41
|
syl2anc |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( j mod ( N ` K ) ) mod ( N ` K ) ) = ( j mod ( N ` K ) ) ) |
| 43 |
29 24 33 31 34 38 42
|
modmul12d |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( ( i mod ( N ` K ) ) x. ( j mod ( N ` K ) ) ) mod ( N ` K ) ) = ( ( i x. j ) mod ( N ` K ) ) ) |
| 44 |
|
oveq1 |
|- ( k = i -> ( k mod ( N ` K ) ) = ( i mod ( N ` K ) ) ) |
| 45 |
|
eqid |
|- ( k e. NN |-> ( k mod ( N ` K ) ) ) = ( k e. NN |-> ( k mod ( N ` K ) ) ) |
| 46 |
|
ovex |
|- ( i mod ( N ` K ) ) e. _V |
| 47 |
44 45 46
|
fvmpt |
|- ( i e. NN -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` i ) = ( i mod ( N ` K ) ) ) |
| 48 |
47
|
ad2antrl |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` i ) = ( i mod ( N ` K ) ) ) |
| 49 |
|
oveq1 |
|- ( k = j -> ( k mod ( N ` K ) ) = ( j mod ( N ` K ) ) ) |
| 50 |
|
ovex |
|- ( j mod ( N ` K ) ) e. _V |
| 51 |
49 45 50
|
fvmpt |
|- ( j e. NN -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` j ) = ( j mod ( N ` K ) ) ) |
| 52 |
51
|
ad2antll |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` j ) = ( j mod ( N ` K ) ) ) |
| 53 |
48 52
|
oveq12d |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` i ) P ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` j ) ) = ( ( i mod ( N ` K ) ) P ( j mod ( N ` K ) ) ) ) |
| 54 |
|
oveq12 |
|- ( ( x = ( i mod ( N ` K ) ) /\ y = ( j mod ( N ` K ) ) ) -> ( x x. y ) = ( ( i mod ( N ` K ) ) x. ( j mod ( N ` K ) ) ) ) |
| 55 |
54
|
oveq1d |
|- ( ( x = ( i mod ( N ` K ) ) /\ y = ( j mod ( N ` K ) ) ) -> ( ( x x. y ) mod ( N ` K ) ) = ( ( ( i mod ( N ` K ) ) x. ( j mod ( N ` K ) ) ) mod ( N ` K ) ) ) |
| 56 |
|
ovex |
|- ( ( ( i mod ( N ` K ) ) x. ( j mod ( N ` K ) ) ) mod ( N ` K ) ) e. _V |
| 57 |
55 7 56
|
ovmpoa |
|- ( ( ( i mod ( N ` K ) ) e. _V /\ ( j mod ( N ` K ) ) e. _V ) -> ( ( i mod ( N ` K ) ) P ( j mod ( N ` K ) ) ) = ( ( ( i mod ( N ` K ) ) x. ( j mod ( N ` K ) ) ) mod ( N ` K ) ) ) |
| 58 |
46 50 57
|
mp2an |
|- ( ( i mod ( N ` K ) ) P ( j mod ( N ` K ) ) ) = ( ( ( i mod ( N ` K ) ) x. ( j mod ( N ` K ) ) ) mod ( N ` K ) ) |
| 59 |
53 58
|
eqtrdi |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` i ) P ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` j ) ) = ( ( ( i mod ( N ` K ) ) x. ( j mod ( N ` K ) ) ) mod ( N ` K ) ) ) |
| 60 |
|
oveq1 |
|- ( k = ( i x. j ) -> ( k mod ( N ` K ) ) = ( ( i x. j ) mod ( N ` K ) ) ) |
| 61 |
|
ovex |
|- ( ( i x. j ) mod ( N ` K ) ) e. _V |
| 62 |
60 45 61
|
fvmpt |
|- ( ( i x. j ) e. NN -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` ( i x. j ) ) = ( ( i x. j ) mod ( N ` K ) ) ) |
| 63 |
11 62
|
syl |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` ( i x. j ) ) = ( ( i x. j ) mod ( N ` K ) ) ) |
| 64 |
43 59 63
|
3eqtr4rd |
|- ( ( ( ph /\ K e. NN0 ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` ( i x. j ) ) = ( ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` i ) P ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` j ) ) ) |
| 65 |
|
oveq1 |
|- ( k = ( N ` i ) -> ( k mod ( N ` K ) ) = ( ( N ` i ) mod ( N ` K ) ) ) |
| 66 |
|
ovex |
|- ( ( N ` i ) mod ( N ` K ) ) e. _V |
| 67 |
65 45 66
|
fvmpt |
|- ( ( N ` i ) e. NN -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` ( N ` i ) ) = ( ( N ` i ) mod ( N ` K ) ) ) |
| 68 |
15 67
|
syl |
|- ( ( ( ph /\ K e. NN0 ) /\ i e. NN0 ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` ( N ` i ) ) = ( ( N ` i ) mod ( N ` K ) ) ) |
| 69 |
|
fveq2 |
|- ( k = i -> ( N ` k ) = ( N ` i ) ) |
| 70 |
69
|
oveq1d |
|- ( k = i -> ( ( N ` k ) mod ( N ` K ) ) = ( ( N ` i ) mod ( N ` K ) ) ) |
| 71 |
|
eqid |
|- ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) = ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) |
| 72 |
70 71 66
|
fvmpt |
|- ( i e. NN0 -> ( ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ` i ) = ( ( N ` i ) mod ( N ` K ) ) ) |
| 73 |
72
|
adantl |
|- ( ( ( ph /\ K e. NN0 ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ` i ) = ( ( N ` i ) mod ( N ` K ) ) ) |
| 74 |
68 73
|
eqtr4d |
|- ( ( ( ph /\ K e. NN0 ) /\ i e. NN0 ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` ( N ` i ) ) = ( ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ` i ) ) |
| 75 |
12 74
|
sylan2 |
|- ( ( ( ph /\ K e. NN0 ) /\ i e. ( 0 ... ( deg ` F ) ) ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` ( N ` i ) ) = ( ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ` i ) ) |
| 76 |
11 16 22 64 75
|
seqhomo |
|- ( ( ph /\ K e. NN0 ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` ( seq 0 ( x. , N ) ` ( deg ` F ) ) ) = ( seq 0 ( P , ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ) ` ( deg ` F ) ) ) |
| 77 |
9 76
|
eqtrid |
|- ( ( ph /\ K e. NN0 ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` R ) = ( seq 0 ( P , ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ) ` ( deg ` F ) ) ) |
| 78 |
8 77
|
sylan2 |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` R ) = ( seq 0 ( P , ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ) ` ( deg ` F ) ) ) |
| 79 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 80 |
10
|
adantl |
|- ( ( ph /\ ( i e. NN /\ j e. NN ) ) -> ( i x. j ) e. NN ) |
| 81 |
20 79 14 80
|
seqf |
|- ( ph -> seq 0 ( x. , N ) : NN0 --> NN ) |
| 82 |
81 19
|
ffvelcdmd |
|- ( ph -> ( seq 0 ( x. , N ) ` ( deg ` F ) ) e. NN ) |
| 83 |
6 82
|
eqeltrid |
|- ( ph -> R e. NN ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ K e. NN0 ) -> R e. NN ) |
| 85 |
|
oveq1 |
|- ( k = R -> ( k mod ( N ` K ) ) = ( R mod ( N ` K ) ) ) |
| 86 |
|
ovex |
|- ( R mod ( N ` K ) ) e. _V |
| 87 |
85 45 86
|
fvmpt |
|- ( R e. NN -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` R ) = ( R mod ( N ` K ) ) ) |
| 88 |
84 87
|
syl |
|- ( ( ph /\ K e. NN0 ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` R ) = ( R mod ( N ` K ) ) ) |
| 89 |
8 88
|
sylan2 |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( ( k e. NN |-> ( k mod ( N ` K ) ) ) ` R ) = ( R mod ( N ` K ) ) ) |
| 90 |
|
oveq12 |
|- ( ( x = i /\ y = j ) -> ( x x. y ) = ( i x. j ) ) |
| 91 |
90
|
oveq1d |
|- ( ( x = i /\ y = j ) -> ( ( x x. y ) mod ( N ` K ) ) = ( ( i x. j ) mod ( N ` K ) ) ) |
| 92 |
91 7 61
|
ovmpoa |
|- ( ( i e. _V /\ j e. _V ) -> ( i P j ) = ( ( i x. j ) mod ( N ` K ) ) ) |
| 93 |
92
|
el2v |
|- ( i P j ) = ( ( i x. j ) mod ( N ` K ) ) |
| 94 |
|
nn0mulcl |
|- ( ( i e. NN0 /\ j e. NN0 ) -> ( i x. j ) e. NN0 ) |
| 95 |
94
|
nn0zd |
|- ( ( i e. NN0 /\ j e. NN0 ) -> ( i x. j ) e. ZZ ) |
| 96 |
8 26
|
sylan2 |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( N ` K ) e. NN ) |
| 97 |
|
zmodcl |
|- ( ( ( i x. j ) e. ZZ /\ ( N ` K ) e. NN ) -> ( ( i x. j ) mod ( N ` K ) ) e. NN0 ) |
| 98 |
95 96 97
|
syl2anr |
|- ( ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) /\ ( i e. NN0 /\ j e. NN0 ) ) -> ( ( i x. j ) mod ( N ` K ) ) e. NN0 ) |
| 99 |
93 98
|
eqeltrid |
|- ( ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) /\ ( i e. NN0 /\ j e. NN0 ) ) -> ( i P j ) e. NN0 ) |
| 100 |
|
fveq2 |
|- ( k = m -> ( B ` k ) = ( B ` m ) ) |
| 101 |
100
|
oveq1d |
|- ( k = m -> ( ( B ` k ) x. n ) = ( ( B ` m ) x. n ) ) |
| 102 |
101
|
eleq1d |
|- ( k = m -> ( ( ( B ` k ) x. n ) e. ZZ <-> ( ( B ` m ) x. n ) e. ZZ ) ) |
| 103 |
102
|
rabbidv |
|- ( k = m -> { n e. NN | ( ( B ` k ) x. n ) e. ZZ } = { n e. NN | ( ( B ` m ) x. n ) e. ZZ } ) |
| 104 |
103
|
infeq1d |
|- ( k = m -> inf ( { n e. NN | ( ( B ` k ) x. n ) e. ZZ } , RR , < ) = inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) ) |
| 105 |
104
|
cbvmptv |
|- ( k e. NN0 |-> inf ( { n e. NN | ( ( B ` k ) x. n ) e. ZZ } , RR , < ) ) = ( m e. NN0 |-> inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) ) |
| 106 |
5 105
|
eqtri |
|- N = ( m e. NN0 |-> inf ( { n e. NN | ( ( B ` m ) x. n ) e. ZZ } , RR , < ) ) |
| 107 |
1 2 3 4 106 6
|
elqaalem1 |
|- ( ( ph /\ k e. NN0 ) -> ( ( N ` k ) e. NN /\ ( ( B ` k ) x. ( N ` k ) ) e. ZZ ) ) |
| 108 |
107
|
simpld |
|- ( ( ph /\ k e. NN0 ) -> ( N ` k ) e. NN ) |
| 109 |
108
|
adantlr |
|- ( ( ( ph /\ K e. NN0 ) /\ k e. NN0 ) -> ( N ` k ) e. NN ) |
| 110 |
109
|
nnzd |
|- ( ( ( ph /\ K e. NN0 ) /\ k e. NN0 ) -> ( N ` k ) e. ZZ ) |
| 111 |
26
|
adantr |
|- ( ( ( ph /\ K e. NN0 ) /\ k e. NN0 ) -> ( N ` K ) e. NN ) |
| 112 |
110 111
|
zmodcld |
|- ( ( ( ph /\ K e. NN0 ) /\ k e. NN0 ) -> ( ( N ` k ) mod ( N ` K ) ) e. NN0 ) |
| 113 |
112
|
fmpttd |
|- ( ( ph /\ K e. NN0 ) -> ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) : NN0 --> NN0 ) |
| 114 |
8 113
|
sylan2 |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) : NN0 --> NN0 ) |
| 115 |
|
ffvelcdm |
|- ( ( ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) : NN0 --> NN0 /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ` i ) e. NN0 ) |
| 116 |
114 12 115
|
syl2an |
|- ( ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) /\ i e. ( 0 ... ( deg ` F ) ) ) -> ( ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ` i ) e. NN0 ) |
| 117 |
|
c0ex |
|- 0 e. _V |
| 118 |
|
vex |
|- i e. _V |
| 119 |
|
oveq12 |
|- ( ( x = 0 /\ y = i ) -> ( x x. y ) = ( 0 x. i ) ) |
| 120 |
119
|
oveq1d |
|- ( ( x = 0 /\ y = i ) -> ( ( x x. y ) mod ( N ` K ) ) = ( ( 0 x. i ) mod ( N ` K ) ) ) |
| 121 |
|
ovex |
|- ( ( 0 x. i ) mod ( N ` K ) ) e. _V |
| 122 |
120 7 121
|
ovmpoa |
|- ( ( 0 e. _V /\ i e. _V ) -> ( 0 P i ) = ( ( 0 x. i ) mod ( N ` K ) ) ) |
| 123 |
117 118 122
|
mp2an |
|- ( 0 P i ) = ( ( 0 x. i ) mod ( N ` K ) ) |
| 124 |
|
nn0cn |
|- ( i e. NN0 -> i e. CC ) |
| 125 |
124
|
mul02d |
|- ( i e. NN0 -> ( 0 x. i ) = 0 ) |
| 126 |
125
|
oveq1d |
|- ( i e. NN0 -> ( ( 0 x. i ) mod ( N ` K ) ) = ( 0 mod ( N ` K ) ) ) |
| 127 |
96
|
nnrpd |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( N ` K ) e. RR+ ) |
| 128 |
|
0mod |
|- ( ( N ` K ) e. RR+ -> ( 0 mod ( N ` K ) ) = 0 ) |
| 129 |
127 128
|
syl |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( 0 mod ( N ` K ) ) = 0 ) |
| 130 |
126 129
|
sylan9eqr |
|- ( ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) /\ i e. NN0 ) -> ( ( 0 x. i ) mod ( N ` K ) ) = 0 ) |
| 131 |
123 130
|
eqtrid |
|- ( ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) /\ i e. NN0 ) -> ( 0 P i ) = 0 ) |
| 132 |
|
oveq12 |
|- ( ( x = i /\ y = 0 ) -> ( x x. y ) = ( i x. 0 ) ) |
| 133 |
132
|
oveq1d |
|- ( ( x = i /\ y = 0 ) -> ( ( x x. y ) mod ( N ` K ) ) = ( ( i x. 0 ) mod ( N ` K ) ) ) |
| 134 |
|
ovex |
|- ( ( i x. 0 ) mod ( N ` K ) ) e. _V |
| 135 |
133 7 134
|
ovmpoa |
|- ( ( i e. _V /\ 0 e. _V ) -> ( i P 0 ) = ( ( i x. 0 ) mod ( N ` K ) ) ) |
| 136 |
118 117 135
|
mp2an |
|- ( i P 0 ) = ( ( i x. 0 ) mod ( N ` K ) ) |
| 137 |
124
|
mul01d |
|- ( i e. NN0 -> ( i x. 0 ) = 0 ) |
| 138 |
137
|
oveq1d |
|- ( i e. NN0 -> ( ( i x. 0 ) mod ( N ` K ) ) = ( 0 mod ( N ` K ) ) ) |
| 139 |
138 129
|
sylan9eqr |
|- ( ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) /\ i e. NN0 ) -> ( ( i x. 0 ) mod ( N ` K ) ) = 0 ) |
| 140 |
136 139
|
eqtrid |
|- ( ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) /\ i e. NN0 ) -> ( i P 0 ) = 0 ) |
| 141 |
|
simpr |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> K e. ( 0 ... ( deg ` F ) ) ) |
| 142 |
19
|
adantr |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( deg ` F ) e. NN0 ) |
| 143 |
8
|
adantl |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> K e. NN0 ) |
| 144 |
|
fveq2 |
|- ( k = K -> ( N ` k ) = ( N ` K ) ) |
| 145 |
144
|
oveq1d |
|- ( k = K -> ( ( N ` k ) mod ( N ` K ) ) = ( ( N ` K ) mod ( N ` K ) ) ) |
| 146 |
|
ovex |
|- ( ( N ` K ) mod ( N ` K ) ) e. _V |
| 147 |
145 71 146
|
fvmpt |
|- ( K e. NN0 -> ( ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ` K ) = ( ( N ` K ) mod ( N ` K ) ) ) |
| 148 |
143 147
|
syl |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ` K ) = ( ( N ` K ) mod ( N ` K ) ) ) |
| 149 |
96
|
nncnd |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( N ` K ) e. CC ) |
| 150 |
96
|
nnne0d |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( N ` K ) =/= 0 ) |
| 151 |
149 150
|
dividd |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( ( N ` K ) / ( N ` K ) ) = 1 ) |
| 152 |
|
1z |
|- 1 e. ZZ |
| 153 |
151 152
|
eqeltrdi |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( ( N ` K ) / ( N ` K ) ) e. ZZ ) |
| 154 |
96
|
nnred |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( N ` K ) e. RR ) |
| 155 |
|
mod0 |
|- ( ( ( N ` K ) e. RR /\ ( N ` K ) e. RR+ ) -> ( ( ( N ` K ) mod ( N ` K ) ) = 0 <-> ( ( N ` K ) / ( N ` K ) ) e. ZZ ) ) |
| 156 |
154 127 155
|
syl2anc |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( N ` K ) mod ( N ` K ) ) = 0 <-> ( ( N ` K ) / ( N ` K ) ) e. ZZ ) ) |
| 157 |
153 156
|
mpbird |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( ( N ` K ) mod ( N ` K ) ) = 0 ) |
| 158 |
148 157
|
eqtrd |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ` K ) = 0 ) |
| 159 |
99 116 131 140 141 142 158
|
seqz |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( seq 0 ( P , ( k e. NN0 |-> ( ( N ` k ) mod ( N ` K ) ) ) ) ` ( deg ` F ) ) = 0 ) |
| 160 |
78 89 159
|
3eqtr3d |
|- ( ( ph /\ K e. ( 0 ... ( deg ` F ) ) ) -> ( R mod ( N ` K ) ) = 0 ) |