| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elqaa.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
elqaa.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) |
| 3 |
|
elqaa.3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 4 |
|
elqaa.4 |
⊢ 𝐵 = ( coeff ‘ 𝐹 ) |
| 5 |
|
elqaa.5 |
⊢ 𝑁 = ( 𝑘 ∈ ℕ0 ↦ inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
| 6 |
|
elqaa.6 |
⊢ 𝑅 = ( seq 0 ( · , 𝑁 ) ‘ ( deg ‘ 𝐹 ) ) |
| 7 |
|
elqaa.7 |
⊢ 𝑃 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( ( 𝑥 · 𝑦 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 8 |
|
elfznn0 |
⊢ ( 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) → 𝐾 ∈ ℕ0 ) |
| 9 |
6
|
fveq2i |
⊢ ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 ) = ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( seq 0 ( · , 𝑁 ) ‘ ( deg ‘ 𝐹 ) ) ) |
| 10 |
|
nnmulcl |
⊢ ( ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑖 · 𝑗 ) ∈ ℕ ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( 𝑖 · 𝑗 ) ∈ ℕ ) |
| 12 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) → 𝑖 ∈ ℕ0 ) |
| 13 |
1 2 3 4 5 6
|
elqaalem1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑁 ‘ 𝑖 ) ∈ ℕ ∧ ( ( 𝐵 ‘ 𝑖 ) · ( 𝑁 ‘ 𝑖 ) ) ∈ ℤ ) ) |
| 14 |
13
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 ‘ 𝑖 ) ∈ ℕ ) |
| 15 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 ‘ 𝑖 ) ∈ ℕ ) |
| 16 |
12 15
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑁 ‘ 𝑖 ) ∈ ℕ ) |
| 17 |
|
eldifi |
⊢ ( 𝐹 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) → 𝐹 ∈ ( Poly ‘ ℚ ) ) |
| 18 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℚ ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 19 |
2 17 18
|
3syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 20 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 21 |
19 20
|
eleqtrdi |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( deg ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 23 |
|
nnz |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℤ ) |
| 24 |
23
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑖 ∈ ℤ ) |
| 25 |
1 2 3 4 5 6
|
elqaalem1 |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑁 ‘ 𝐾 ) ∈ ℕ ∧ ( ( 𝐵 ‘ 𝐾 ) · ( 𝑁 ‘ 𝐾 ) ) ∈ ℤ ) ) |
| 26 |
25
|
simpld |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 ‘ 𝐾 ) ∈ ℕ ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( 𝑁 ‘ 𝐾 ) ∈ ℕ ) |
| 28 |
24 27
|
zmodcld |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 29 |
28
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ∈ ℤ ) |
| 30 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
| 31 |
30
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑗 ∈ ℤ ) |
| 32 |
31 27
|
zmodcld |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 33 |
32
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ∈ ℤ ) |
| 34 |
27
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( 𝑁 ‘ 𝐾 ) ∈ ℝ+ ) |
| 35 |
|
nnre |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℝ ) |
| 36 |
35
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑖 ∈ ℝ ) |
| 37 |
|
modabs2 |
⊢ ( ( 𝑖 ∈ ℝ ∧ ( 𝑁 ‘ 𝐾 ) ∈ ℝ+ ) → ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) mod ( 𝑁 ‘ 𝐾 ) ) = ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 38 |
36 34 37
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) mod ( 𝑁 ‘ 𝐾 ) ) = ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 39 |
|
nnre |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) |
| 40 |
39
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑗 ∈ ℝ ) |
| 41 |
|
modabs2 |
⊢ ( ( 𝑗 ∈ ℝ ∧ ( 𝑁 ‘ 𝐾 ) ∈ ℝ+ ) → ( ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) mod ( 𝑁 ‘ 𝐾 ) ) = ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 42 |
40 34 41
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) mod ( 𝑁 ‘ 𝐾 ) ) = ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 43 |
29 24 33 31 34 38 42
|
modmul12d |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) · ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) mod ( 𝑁 ‘ 𝐾 ) ) = ( ( 𝑖 · 𝑗 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 44 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) = ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 45 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 46 |
|
ovex |
⊢ ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ∈ V |
| 47 |
44 45 46
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) = ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 48 |
47
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) = ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 49 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) = ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 50 |
|
ovex |
⊢ ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ∈ V |
| 51 |
49 45 50
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑗 ) = ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 52 |
51
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑗 ) = ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 53 |
48 52
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) 𝑃 ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑗 ) ) = ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) 𝑃 ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) ) |
| 54 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ∧ 𝑦 = ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) → ( 𝑥 · 𝑦 ) = ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) · ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) ) |
| 55 |
54
|
oveq1d |
⊢ ( ( 𝑥 = ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ∧ 𝑦 = ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) → ( ( 𝑥 · 𝑦 ) mod ( 𝑁 ‘ 𝐾 ) ) = ( ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) · ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 56 |
|
ovex |
⊢ ( ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) · ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) mod ( 𝑁 ‘ 𝐾 ) ) ∈ V |
| 57 |
55 7 56
|
ovmpoa |
⊢ ( ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) ∈ V ∧ ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ∈ V ) → ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) 𝑃 ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) = ( ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) · ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 58 |
46 50 57
|
mp2an |
⊢ ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) 𝑃 ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) = ( ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) · ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) mod ( 𝑁 ‘ 𝐾 ) ) |
| 59 |
53 58
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) 𝑃 ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑗 ) ) = ( ( ( 𝑖 mod ( 𝑁 ‘ 𝐾 ) ) · ( 𝑗 mod ( 𝑁 ‘ 𝐾 ) ) ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 60 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑖 · 𝑗 ) → ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) = ( ( 𝑖 · 𝑗 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 61 |
|
ovex |
⊢ ( ( 𝑖 · 𝑗 ) mod ( 𝑁 ‘ 𝐾 ) ) ∈ V |
| 62 |
60 45 61
|
fvmpt |
⊢ ( ( 𝑖 · 𝑗 ) ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑖 · 𝑗 ) ) = ( ( 𝑖 · 𝑗 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 63 |
11 62
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑖 · 𝑗 ) ) = ( ( 𝑖 · 𝑗 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 64 |
43 59 63
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑖 · 𝑗 ) ) = ( ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) 𝑃 ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑗 ) ) ) |
| 65 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑁 ‘ 𝑖 ) → ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) = ( ( 𝑁 ‘ 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 66 |
|
ovex |
⊢ ( ( 𝑁 ‘ 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) ∈ V |
| 67 |
65 45 66
|
fvmpt |
⊢ ( ( 𝑁 ‘ 𝑖 ) ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑁 ‘ 𝑖 ) ) = ( ( 𝑁 ‘ 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 68 |
15 67
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑁 ‘ 𝑖 ) ) = ( ( 𝑁 ‘ 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑁 ‘ 𝑘 ) = ( 𝑁 ‘ 𝑖 ) ) |
| 70 |
69
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) = ( ( 𝑁 ‘ 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 71 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 72 |
70 71 66
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) = ( ( 𝑁 ‘ 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 73 |
72
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) = ( ( 𝑁 ‘ 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 74 |
68 73
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑁 ‘ 𝑖 ) ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) ) |
| 75 |
12 74
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( 𝑁 ‘ 𝑖 ) ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) ) |
| 76 |
11 16 22 64 75
|
seqhomo |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ ( seq 0 ( · , 𝑁 ) ‘ ( deg ‘ 𝐹 ) ) ) = ( seq 0 ( 𝑃 , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ) ‘ ( deg ‘ 𝐹 ) ) ) |
| 77 |
9 76
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 ) = ( seq 0 ( 𝑃 , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ) ‘ ( deg ‘ 𝐹 ) ) ) |
| 78 |
8 77
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 ) = ( seq 0 ( 𝑃 , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ) ‘ ( deg ‘ 𝐹 ) ) ) |
| 79 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 80 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( 𝑖 · 𝑗 ) ∈ ℕ ) |
| 81 |
20 79 14 80
|
seqf |
⊢ ( 𝜑 → seq 0 ( · , 𝑁 ) : ℕ0 ⟶ ℕ ) |
| 82 |
81 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( seq 0 ( · , 𝑁 ) ‘ ( deg ‘ 𝐹 ) ) ∈ ℕ ) |
| 83 |
6 82
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → 𝑅 ∈ ℕ ) |
| 85 |
|
oveq1 |
⊢ ( 𝑘 = 𝑅 → ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) = ( 𝑅 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 86 |
|
ovex |
⊢ ( 𝑅 mod ( 𝑁 ‘ 𝐾 ) ) ∈ V |
| 87 |
85 45 86
|
fvmpt |
⊢ ( 𝑅 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 ) = ( 𝑅 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 88 |
84 87
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 ) = ( 𝑅 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 89 |
8 88
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝑘 mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑅 ) = ( 𝑅 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 90 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( 𝑥 · 𝑦 ) = ( 𝑖 · 𝑗 ) ) |
| 91 |
90
|
oveq1d |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( ( 𝑥 · 𝑦 ) mod ( 𝑁 ‘ 𝐾 ) ) = ( ( 𝑖 · 𝑗 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 92 |
91 7 61
|
ovmpoa |
⊢ ( ( 𝑖 ∈ V ∧ 𝑗 ∈ V ) → ( 𝑖 𝑃 𝑗 ) = ( ( 𝑖 · 𝑗 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 93 |
92
|
el2v |
⊢ ( 𝑖 𝑃 𝑗 ) = ( ( 𝑖 · 𝑗 ) mod ( 𝑁 ‘ 𝐾 ) ) |
| 94 |
|
nn0mulcl |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑖 · 𝑗 ) ∈ ℕ0 ) |
| 95 |
94
|
nn0zd |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑖 · 𝑗 ) ∈ ℤ ) |
| 96 |
8 26
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑁 ‘ 𝐾 ) ∈ ℕ ) |
| 97 |
|
zmodcl |
⊢ ( ( ( 𝑖 · 𝑗 ) ∈ ℤ ∧ ( 𝑁 ‘ 𝐾 ) ∈ ℕ ) → ( ( 𝑖 · 𝑗 ) mod ( 𝑁 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 98 |
95 96 97
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) ∧ ( 𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) ) → ( ( 𝑖 · 𝑗 ) mod ( 𝑁 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 99 |
93 98
|
eqeltrid |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) ∧ ( 𝑖 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) ) → ( 𝑖 𝑃 𝑗 ) ∈ ℕ0 ) |
| 100 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑚 ) ) |
| 101 |
100
|
oveq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) = ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ) |
| 102 |
101
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ ↔ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ ) ) |
| 103 |
102
|
rabbidv |
⊢ ( 𝑘 = 𝑚 → { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } = { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } ) |
| 104 |
103
|
infeq1d |
⊢ ( 𝑘 = 𝑚 → inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
| 105 |
104
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ0 ↦ inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑘 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) = ( 𝑚 ∈ ℕ0 ↦ inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
| 106 |
5 105
|
eqtri |
⊢ 𝑁 = ( 𝑚 ∈ ℕ0 ↦ inf ( { 𝑛 ∈ ℕ ∣ ( ( 𝐵 ‘ 𝑚 ) · 𝑛 ) ∈ ℤ } , ℝ , < ) ) |
| 107 |
1 2 3 4 106 6
|
elqaalem1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 ‘ 𝑘 ) ∈ ℕ ∧ ( ( 𝐵 ‘ 𝑘 ) · ( 𝑁 ‘ 𝑘 ) ) ∈ ℤ ) ) |
| 108 |
107
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ‘ 𝑘 ) ∈ ℕ ) |
| 109 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ‘ 𝑘 ) ∈ ℕ ) |
| 110 |
109
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ‘ 𝑘 ) ∈ ℤ ) |
| 111 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ‘ 𝐾 ) ∈ ℕ ) |
| 112 |
110 111
|
zmodcld |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 113 |
112
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) : ℕ0 ⟶ ℕ0 ) |
| 114 |
8 113
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) : ℕ0 ⟶ ℕ0 ) |
| 115 |
|
ffvelcdm |
⊢ ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) : ℕ0 ⟶ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) ∈ ℕ0 ) |
| 116 |
114 12 115
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝑖 ) ∈ ℕ0 ) |
| 117 |
|
c0ex |
⊢ 0 ∈ V |
| 118 |
|
vex |
⊢ 𝑖 ∈ V |
| 119 |
|
oveq12 |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑖 ) → ( 𝑥 · 𝑦 ) = ( 0 · 𝑖 ) ) |
| 120 |
119
|
oveq1d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑖 ) → ( ( 𝑥 · 𝑦 ) mod ( 𝑁 ‘ 𝐾 ) ) = ( ( 0 · 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 121 |
|
ovex |
⊢ ( ( 0 · 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) ∈ V |
| 122 |
120 7 121
|
ovmpoa |
⊢ ( ( 0 ∈ V ∧ 𝑖 ∈ V ) → ( 0 𝑃 𝑖 ) = ( ( 0 · 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 123 |
117 118 122
|
mp2an |
⊢ ( 0 𝑃 𝑖 ) = ( ( 0 · 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) |
| 124 |
|
nn0cn |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℂ ) |
| 125 |
124
|
mul02d |
⊢ ( 𝑖 ∈ ℕ0 → ( 0 · 𝑖 ) = 0 ) |
| 126 |
125
|
oveq1d |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 0 · 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) = ( 0 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 127 |
96
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑁 ‘ 𝐾 ) ∈ ℝ+ ) |
| 128 |
|
0mod |
⊢ ( ( 𝑁 ‘ 𝐾 ) ∈ ℝ+ → ( 0 mod ( 𝑁 ‘ 𝐾 ) ) = 0 ) |
| 129 |
127 128
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 0 mod ( 𝑁 ‘ 𝐾 ) ) = 0 ) |
| 130 |
126 129
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 0 · 𝑖 ) mod ( 𝑁 ‘ 𝐾 ) ) = 0 ) |
| 131 |
123 130
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ℕ0 ) → ( 0 𝑃 𝑖 ) = 0 ) |
| 132 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 0 ) → ( 𝑥 · 𝑦 ) = ( 𝑖 · 0 ) ) |
| 133 |
132
|
oveq1d |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 0 ) → ( ( 𝑥 · 𝑦 ) mod ( 𝑁 ‘ 𝐾 ) ) = ( ( 𝑖 · 0 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 134 |
|
ovex |
⊢ ( ( 𝑖 · 0 ) mod ( 𝑁 ‘ 𝐾 ) ) ∈ V |
| 135 |
133 7 134
|
ovmpoa |
⊢ ( ( 𝑖 ∈ V ∧ 0 ∈ V ) → ( 𝑖 𝑃 0 ) = ( ( 𝑖 · 0 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 136 |
118 117 135
|
mp2an |
⊢ ( 𝑖 𝑃 0 ) = ( ( 𝑖 · 0 ) mod ( 𝑁 ‘ 𝐾 ) ) |
| 137 |
124
|
mul01d |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 · 0 ) = 0 ) |
| 138 |
137
|
oveq1d |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑖 · 0 ) mod ( 𝑁 ‘ 𝐾 ) ) = ( 0 mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 139 |
138 129
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑖 · 0 ) mod ( 𝑁 ‘ 𝐾 ) ) = 0 ) |
| 140 |
136 139
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 𝑃 0 ) = 0 ) |
| 141 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) |
| 142 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 143 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → 𝐾 ∈ ℕ0 ) |
| 144 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑁 ‘ 𝑘 ) = ( 𝑁 ‘ 𝐾 ) ) |
| 145 |
144
|
oveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) = ( ( 𝑁 ‘ 𝐾 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 146 |
|
ovex |
⊢ ( ( 𝑁 ‘ 𝐾 ) mod ( 𝑁 ‘ 𝐾 ) ) ∈ V |
| 147 |
145 71 146
|
fvmpt |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝐾 ) = ( ( 𝑁 ‘ 𝐾 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 148 |
143 147
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝐾 ) = ( ( 𝑁 ‘ 𝐾 ) mod ( 𝑁 ‘ 𝐾 ) ) ) |
| 149 |
96
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑁 ‘ 𝐾 ) ∈ ℂ ) |
| 150 |
96
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑁 ‘ 𝐾 ) ≠ 0 ) |
| 151 |
149 150
|
dividd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑁 ‘ 𝐾 ) / ( 𝑁 ‘ 𝐾 ) ) = 1 ) |
| 152 |
|
1z |
⊢ 1 ∈ ℤ |
| 153 |
151 152
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑁 ‘ 𝐾 ) / ( 𝑁 ‘ 𝐾 ) ) ∈ ℤ ) |
| 154 |
96
|
nnred |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑁 ‘ 𝐾 ) ∈ ℝ ) |
| 155 |
|
mod0 |
⊢ ( ( ( 𝑁 ‘ 𝐾 ) ∈ ℝ ∧ ( 𝑁 ‘ 𝐾 ) ∈ ℝ+ ) → ( ( ( 𝑁 ‘ 𝐾 ) mod ( 𝑁 ‘ 𝐾 ) ) = 0 ↔ ( ( 𝑁 ‘ 𝐾 ) / ( 𝑁 ‘ 𝐾 ) ) ∈ ℤ ) ) |
| 156 |
154 127 155
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( ( 𝑁 ‘ 𝐾 ) mod ( 𝑁 ‘ 𝐾 ) ) = 0 ↔ ( ( 𝑁 ‘ 𝐾 ) / ( 𝑁 ‘ 𝐾 ) ) ∈ ℤ ) ) |
| 157 |
153 156
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑁 ‘ 𝐾 ) mod ( 𝑁 ‘ 𝐾 ) ) = 0 ) |
| 158 |
148 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ‘ 𝐾 ) = 0 ) |
| 159 |
99 116 131 140 141 142 158
|
seqz |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( seq 0 ( 𝑃 , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑁 ‘ 𝑘 ) mod ( 𝑁 ‘ 𝐾 ) ) ) ) ‘ ( deg ‘ 𝐹 ) ) = 0 ) |
| 160 |
78 89 159
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) → ( 𝑅 mod ( 𝑁 ‘ 𝐾 ) ) = 0 ) |