Step |
Hyp |
Ref |
Expression |
1 |
|
elqaa.1 |
|
2 |
|
elqaa.2 |
|
3 |
|
elqaa.3 |
|
4 |
|
elqaa.4 |
|
5 |
|
elqaa.5 |
|
6 |
|
elqaa.6 |
|
7 |
|
fveq2 |
|
8 |
7
|
oveq1d |
|
9 |
8
|
eleq1d |
|
10 |
9
|
rabbidv |
|
11 |
10
|
infeq1d |
|
12 |
|
ltso |
|
13 |
12
|
infex |
|
14 |
11 5 13
|
fvmpt |
|
15 |
14
|
adantl |
|
16 |
|
ssrab2 |
|
17 |
|
nnuz |
|
18 |
16 17
|
sseqtri |
|
19 |
2
|
eldifad |
|
20 |
|
0z |
|
21 |
|
zq |
|
22 |
20 21
|
ax-mp |
|
23 |
4
|
coef2 |
|
24 |
19 22 23
|
sylancl |
|
25 |
24
|
ffvelrnda |
|
26 |
|
qmulz |
|
27 |
25 26
|
syl |
|
28 |
|
rabn0 |
|
29 |
27 28
|
sylibr |
|
30 |
|
infssuzcl |
|
31 |
18 29 30
|
sylancr |
|
32 |
15 31
|
eqeltrd |
|
33 |
|
oveq2 |
|
34 |
33
|
eleq1d |
|
35 |
34
|
elrab |
|
36 |
32 35
|
sylib |
|