Metamath Proof Explorer


Theorem fineqvrep

Description: If the Axiom of Infinity is negated, then the Axiom of Replacement becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024)

Ref Expression
Assertion fineqvrep ( Fin = V → ( ∀ 𝑤𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 funopab ( Fun { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ↔ ∀ 𝑤 ∃* 𝑧𝑦 𝜑 )
2 nfa1 𝑦𝑦 𝜑
3 2 mof ( ∃* 𝑧𝑦 𝜑 ↔ ∃ 𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) )
4 3 albii ( ∀ 𝑤 ∃* 𝑧𝑦 𝜑 ↔ ∀ 𝑤𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) )
5 1 4 bitr2i ( ∀ 𝑤𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) ↔ Fun { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } )
6 vex 𝑥 ∈ V
7 eleq2w2 ( Fin = V → ( 𝑥 ∈ Fin ↔ 𝑥 ∈ V ) )
8 6 7 mpbiri ( Fin = V → 𝑥 ∈ Fin )
9 imafi ( ( Fun { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ∧ 𝑥 ∈ Fin ) → ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } “ 𝑥 ) ∈ Fin )
10 8 9 sylan2 ( ( Fun { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ∧ Fin = V ) → ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } “ 𝑥 ) ∈ Fin )
11 10 elexd ( ( Fun { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ∧ Fin = V ) → ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } “ 𝑥 ) ∈ V )
12 nfv 𝑦 𝑤𝑥
13 2 nfopab 𝑦 { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 }
14 13 nfel2 𝑦𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 }
15 12 14 nfan 𝑦 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } )
16 15 nfex 𝑦𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } )
17 16 nfab 𝑦 { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) }
18 17 issetf ( { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) } ∈ V ↔ ∃ 𝑦 𝑦 = { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) } )
19 abeq2 ( 𝑦 = { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) } ↔ ∀ 𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ) )
20 19 exbii ( ∃ 𝑦 𝑦 = { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) } ↔ ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ) )
21 opabidw ( ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ↔ ∀ 𝑦 𝜑 )
22 21 anbi2i ( ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ↔ ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) )
23 22 exbii ( ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) )
24 23 bibi2i ( ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ) ↔ ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
25 24 albii ( ∀ 𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ) ↔ ∀ 𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
26 25 exbii ( ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ) ↔ ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
27 18 20 26 3bitrri ( ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) } ∈ V )
28 dfima3 ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } “ 𝑥 ) = { 𝑣 ∣ ∃ 𝑢 ( 𝑢𝑥 ∧ ⟨ 𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) }
29 nfv 𝑧 𝑢𝑥
30 nfopab2 𝑧 { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 }
31 30 nfel2 𝑧𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 }
32 29 31 nfan 𝑧 ( 𝑢𝑥 ∧ ⟨ 𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } )
33 32 nfex 𝑧𝑢 ( 𝑢𝑥 ∧ ⟨ 𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } )
34 nfv 𝑣𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } )
35 nfv 𝑤 𝑢𝑥
36 nfopab1 𝑤 { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 }
37 36 nfel2 𝑤𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 }
38 35 37 nfan 𝑤 ( 𝑢𝑥 ∧ ⟨ 𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } )
39 nfv 𝑢 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } )
40 elequ1 ( 𝑢 = 𝑤 → ( 𝑢𝑥𝑤𝑥 ) )
41 opeq1 ( 𝑢 = 𝑤 → ⟨ 𝑢 , 𝑣 ⟩ = ⟨ 𝑤 , 𝑣 ⟩ )
42 41 eleq1d ( 𝑢 = 𝑤 → ( ⟨ 𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ↔ ⟨ 𝑤 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) )
43 40 42 anbi12d ( 𝑢 = 𝑤 → ( ( 𝑢𝑥 ∧ ⟨ 𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ↔ ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ) )
44 38 39 43 cbvexv1 ( ∃ 𝑢 ( 𝑢𝑥 ∧ ⟨ 𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) )
45 opeq2 ( 𝑣 = 𝑧 → ⟨ 𝑤 , 𝑣 ⟩ = ⟨ 𝑤 , 𝑧 ⟩ )
46 45 eleq1d ( 𝑣 = 𝑧 → ( ⟨ 𝑤 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ↔ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) )
47 46 anbi2d ( 𝑣 = 𝑧 → ( ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ↔ ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ) )
48 47 exbidv ( 𝑣 = 𝑧 → ( ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ) )
49 44 48 syl5bb ( 𝑣 = 𝑧 → ( ∃ 𝑢 ( 𝑢𝑥 ∧ ⟨ 𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) ) )
50 33 34 49 cbvabw { 𝑣 ∣ ∃ 𝑢 ( 𝑢𝑥 ∧ ⟨ 𝑢 , 𝑣 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) } = { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) }
51 28 50 eqtri ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } “ 𝑥 ) = { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) }
52 51 eleq1i ( ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } “ 𝑥 ) ∈ V ↔ { 𝑧 ∣ ∃ 𝑤 ( 𝑤𝑥 ∧ ⟨ 𝑤 , 𝑧 ⟩ ∈ { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ) } ∈ V )
53 27 52 bitr4i ( ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } “ 𝑥 ) ∈ V )
54 11 53 sylibr ( ( Fun { ⟨ 𝑤 , 𝑧 ⟩ ∣ ∀ 𝑦 𝜑 } ∧ Fin = V ) → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
55 5 54 sylanb ( ( ∀ 𝑤𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) ∧ Fin = V ) → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
56 55 expcom ( Fin = V → ( ∀ 𝑤𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤 ( 𝑤𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )