Description: If the Axiom of Infinity is negated, then the Axiom of Replacement becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | fineqvrep | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab | |
|
2 | nfa1 | |
|
3 | 2 | mof | |
4 | 3 | albii | |
5 | 1 4 | bitr2i | |
6 | vex | |
|
7 | eleq2w2 | |
|
8 | 6 7 | mpbiri | |
9 | imafi | |
|
10 | 8 9 | sylan2 | |
11 | 10 | elexd | |
12 | nfv | |
|
13 | 2 | nfopab | |
14 | 13 | nfel2 | |
15 | 12 14 | nfan | |
16 | 15 | nfex | |
17 | 16 | nfab | |
18 | 17 | issetf | |
19 | eqabb | |
|
20 | 19 | exbii | |
21 | opabidw | |
|
22 | 21 | anbi2i | |
23 | 22 | exbii | |
24 | 23 | bibi2i | |
25 | 24 | albii | |
26 | 25 | exbii | |
27 | 18 20 26 | 3bitrri | |
28 | dfima3 | |
|
29 | nfv | |
|
30 | nfopab2 | |
|
31 | 30 | nfel2 | |
32 | 29 31 | nfan | |
33 | 32 | nfex | |
34 | nfv | |
|
35 | nfv | |
|
36 | nfopab1 | |
|
37 | 36 | nfel2 | |
38 | 35 37 | nfan | |
39 | nfv | |
|
40 | elequ1 | |
|
41 | opeq1 | |
|
42 | 41 | eleq1d | |
43 | 40 42 | anbi12d | |
44 | 38 39 43 | cbvexv1 | |
45 | opeq2 | |
|
46 | 45 | eleq1d | |
47 | 46 | anbi2d | |
48 | 47 | exbidv | |
49 | 44 48 | bitrid | |
50 | 33 34 49 | cbvabw | |
51 | 28 50 | eqtri | |
52 | 51 | eleq1i | |
53 | 27 52 | bitr4i | |
54 | 11 53 | sylibr | |
55 | 5 54 | sylanb | |
56 | 55 | expcom | |