Metamath Proof Explorer


Theorem fineqvrep

Description: If the Axiom of Infinity is negated, then the Axiom of Replacement becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024)

Ref Expression
Assertion fineqvrep Fin=Vwyzyφz=yyzzywwxyφ

Proof

Step Hyp Ref Expression
1 funopab Funwz|yφw*zyφ
2 nfa1 yyφ
3 2 mof *zyφyzyφz=y
4 3 albii w*zyφwyzyφz=y
5 1 4 bitr2i wyzyφz=yFunwz|yφ
6 vex xV
7 eleq2w2 Fin=VxFinxV
8 6 7 mpbiri Fin=VxFin
9 imafi Funwz|yφxFinwz|yφxFin
10 8 9 sylan2 Funwz|yφFin=Vwz|yφxFin
11 10 elexd Funwz|yφFin=Vwz|yφxV
12 nfv ywx
13 2 nfopab _ywz|yφ
14 13 nfel2 ywzwz|yφ
15 12 14 nfan ywxwzwz|yφ
16 15 nfex ywwxwzwz|yφ
17 16 nfab _yz|wwxwzwz|yφ
18 17 issetf z|wwxwzwz|yφVyy=z|wwxwzwz|yφ
19 eqabb y=z|wwxwzwz|yφzzywwxwzwz|yφ
20 19 exbii yy=z|wwxwzwz|yφyzzywwxwzwz|yφ
21 opabidw wzwz|yφyφ
22 21 anbi2i wxwzwz|yφwxyφ
23 22 exbii wwxwzwz|yφwwxyφ
24 23 bibi2i zywwxwzwz|yφzywwxyφ
25 24 albii zzywwxwzwz|yφzzywwxyφ
26 25 exbii yzzywwxwzwz|yφyzzywwxyφ
27 18 20 26 3bitrri yzzywwxyφz|wwxwzwz|yφV
28 dfima3 wz|yφx=v|uuxuvwz|yφ
29 nfv zux
30 nfopab2 _zwz|yφ
31 30 nfel2 zuvwz|yφ
32 29 31 nfan zuxuvwz|yφ
33 32 nfex zuuxuvwz|yφ
34 nfv vwwxwzwz|yφ
35 nfv wux
36 nfopab1 _wwz|yφ
37 36 nfel2 wuvwz|yφ
38 35 37 nfan wuxuvwz|yφ
39 nfv uwxwvwz|yφ
40 elequ1 u=wuxwx
41 opeq1 u=wuv=wv
42 41 eleq1d u=wuvwz|yφwvwz|yφ
43 40 42 anbi12d u=wuxuvwz|yφwxwvwz|yφ
44 38 39 43 cbvexv1 uuxuvwz|yφwwxwvwz|yφ
45 opeq2 v=zwv=wz
46 45 eleq1d v=zwvwz|yφwzwz|yφ
47 46 anbi2d v=zwxwvwz|yφwxwzwz|yφ
48 47 exbidv v=zwwxwvwz|yφwwxwzwz|yφ
49 44 48 bitrid v=zuuxuvwz|yφwwxwzwz|yφ
50 33 34 49 cbvabw v|uuxuvwz|yφ=z|wwxwzwz|yφ
51 28 50 eqtri wz|yφx=z|wwxwzwz|yφ
52 51 eleq1i wz|yφxVz|wwxwzwz|yφV
53 27 52 bitr4i yzzywwxyφwz|yφxV
54 11 53 sylibr Funwz|yφFin=Vyzzywwxyφ
55 5 54 sylanb wyzyφz=yFin=Vyzzywwxyφ
56 55 expcom Fin=Vwyzyφz=yyzzywwxyφ