Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → 𝐵 ∈ ( fBas ‘ 𝑍 ) ) |
2 |
|
ssfg |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑍 ) → 𝐵 ⊆ ( 𝑍 filGen 𝐵 ) ) |
3 |
1 2
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → 𝐵 ⊆ ( 𝑍 filGen 𝐵 ) ) |
4 |
3
|
sseld |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( 𝑢 ∈ 𝐵 → 𝑢 ∈ ( 𝑍 filGen 𝐵 ) ) ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → 𝑌 ∈ 𝑊 ) |
6 |
|
simprr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → 𝐺 : 𝑍 ⟶ 𝑌 ) |
7 |
|
eqid |
⊢ ( 𝑍 filGen 𝐵 ) = ( 𝑍 filGen 𝐵 ) |
8 |
7
|
imaelfm |
⊢ ( ( ( 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ∧ 𝑢 ∈ ( 𝑍 filGen 𝐵 ) ) → ( 𝐺 “ 𝑢 ) ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ) |
9 |
8
|
ex |
⊢ ( ( 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) → ( 𝑢 ∈ ( 𝑍 filGen 𝐵 ) → ( 𝐺 “ 𝑢 ) ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ) ) |
10 |
5 1 6 9
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( 𝑢 ∈ ( 𝑍 filGen 𝐵 ) → ( 𝐺 “ 𝑢 ) ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ) ) |
11 |
4 10
|
syld |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( 𝑢 ∈ 𝐵 → ( 𝐺 “ 𝑢 ) ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ) ) |
12 |
11
|
imp |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝐺 “ 𝑢 ) ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ) |
13 |
|
imaeq2 |
⊢ ( 𝑡 = ( 𝐺 “ 𝑢 ) → ( 𝐹 “ 𝑡 ) = ( 𝐹 “ ( 𝐺 “ 𝑢 ) ) ) |
14 |
|
imaco |
⊢ ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) = ( 𝐹 “ ( 𝐺 “ 𝑢 ) ) |
15 |
13 14
|
eqtr4di |
⊢ ( 𝑡 = ( 𝐺 “ 𝑢 ) → ( 𝐹 “ 𝑡 ) = ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ) |
16 |
15
|
sseq1d |
⊢ ( 𝑡 = ( 𝐺 “ 𝑢 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑠 ↔ ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ) |
17 |
16
|
rspcev |
⊢ ( ( ( 𝐺 “ 𝑢 ) ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ∧ ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) → ∃ 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ( 𝐹 “ 𝑡 ) ⊆ 𝑠 ) |
18 |
17
|
ex |
⊢ ( ( 𝐺 “ 𝑢 ) ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) → ( ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 → ∃ 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ( 𝐹 “ 𝑡 ) ⊆ 𝑠 ) ) |
19 |
12 18
|
syl |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 → ∃ 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ( 𝐹 “ 𝑡 ) ⊆ 𝑠 ) ) |
20 |
19
|
rexlimdva |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( ∃ 𝑢 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 → ∃ 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ( 𝐹 “ 𝑡 ) ⊆ 𝑠 ) ) |
21 |
|
elfm |
⊢ ( ( 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) → ( 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ↔ ( 𝑡 ⊆ 𝑌 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝐺 “ 𝑢 ) ⊆ 𝑡 ) ) ) |
22 |
5 1 6 21
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ↔ ( 𝑡 ⊆ 𝑌 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝐺 “ 𝑢 ) ⊆ 𝑡 ) ) ) |
23 |
|
sstr2 |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ ( 𝐹 “ 𝑡 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑠 → ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ) |
24 |
|
imass2 |
⊢ ( ( 𝐺 “ 𝑢 ) ⊆ 𝑡 → ( 𝐹 “ ( 𝐺 “ 𝑢 ) ) ⊆ ( 𝐹 “ 𝑡 ) ) |
25 |
14 24
|
eqsstrid |
⊢ ( ( 𝐺 “ 𝑢 ) ⊆ 𝑡 → ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ ( 𝐹 “ 𝑡 ) ) |
26 |
23 25
|
syl11 |
⊢ ( ( 𝐹 “ 𝑡 ) ⊆ 𝑠 → ( ( 𝐺 “ 𝑢 ) ⊆ 𝑡 → ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ) |
27 |
26
|
reximdv |
⊢ ( ( 𝐹 “ 𝑡 ) ⊆ 𝑠 → ( ∃ 𝑢 ∈ 𝐵 ( 𝐺 “ 𝑢 ) ⊆ 𝑡 → ∃ 𝑢 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ) |
28 |
27
|
com12 |
⊢ ( ∃ 𝑢 ∈ 𝐵 ( 𝐺 “ 𝑢 ) ⊆ 𝑡 → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑠 → ∃ 𝑢 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝑡 ⊆ 𝑌 ∧ ∃ 𝑢 ∈ 𝐵 ( 𝐺 “ 𝑢 ) ⊆ 𝑡 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑠 → ∃ 𝑢 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ) |
30 |
22 29
|
syl6bi |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑠 → ∃ 𝑢 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ) ) |
31 |
30
|
rexlimdv |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( ∃ 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ( 𝐹 “ 𝑡 ) ⊆ 𝑠 → ∃ 𝑢 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ) |
32 |
20 31
|
impbid |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( ∃ 𝑢 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ↔ ∃ 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ( 𝐹 “ 𝑡 ) ⊆ 𝑠 ) ) |
33 |
32
|
anbi2d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( ( 𝑠 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ↔ ( 𝑠 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ( 𝐹 “ 𝑡 ) ⊆ 𝑠 ) ) ) |
34 |
|
simpl1 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → 𝑋 ∈ 𝑉 ) |
35 |
|
fco |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) → ( 𝐹 ∘ 𝐺 ) : 𝑍 ⟶ 𝑋 ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( 𝐹 ∘ 𝐺 ) : 𝑍 ⟶ 𝑋 ) |
37 |
|
elfm |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ∧ ( 𝐹 ∘ 𝐺 ) : 𝑍 ⟶ 𝑋 ) → ( 𝑠 ∈ ( ( 𝑋 FilMap ( 𝐹 ∘ 𝐺 ) ) ‘ 𝐵 ) ↔ ( 𝑠 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ) ) |
38 |
34 1 36 37
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( 𝑠 ∈ ( ( 𝑋 FilMap ( 𝐹 ∘ 𝐺 ) ) ‘ 𝐵 ) ↔ ( 𝑠 ⊆ 𝑋 ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝐹 ∘ 𝐺 ) “ 𝑢 ) ⊆ 𝑠 ) ) ) |
39 |
|
fmfil |
⊢ ( ( 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) → ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ∈ ( Fil ‘ 𝑌 ) ) |
40 |
5 1 6 39
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ∈ ( Fil ‘ 𝑌 ) ) |
41 |
|
filfbas |
⊢ ( ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ∈ ( Fil ‘ 𝑌 ) → ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ∈ ( fBas ‘ 𝑌 ) ) |
42 |
40 41
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ∈ ( fBas ‘ 𝑌 ) ) |
43 |
|
simprl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → 𝐹 : 𝑌 ⟶ 𝑋 ) |
44 |
|
elfm |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑠 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ) ↔ ( 𝑠 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ( 𝐹 “ 𝑡 ) ⊆ 𝑠 ) ) ) |
45 |
34 42 43 44
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( 𝑠 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ) ↔ ( 𝑠 ⊆ 𝑋 ∧ ∃ 𝑡 ∈ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ( 𝐹 “ 𝑡 ) ⊆ 𝑠 ) ) ) |
46 |
33 38 45
|
3bitr4d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( 𝑠 ∈ ( ( 𝑋 FilMap ( 𝐹 ∘ 𝐺 ) ) ‘ 𝐵 ) ↔ 𝑠 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ) ) ) |
47 |
46
|
eqrdv |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ ( fBas ‘ 𝑍 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐺 : 𝑍 ⟶ 𝑌 ) ) → ( ( 𝑋 FilMap ( 𝐹 ∘ 𝐺 ) ) ‘ 𝐵 ) = ( ( 𝑋 FilMap 𝐹 ) ‘ ( ( 𝑌 FilMap 𝐺 ) ‘ 𝐵 ) ) ) |