| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn0 | ⊢ ( 𝑦  ∈  ℕ0  →  ( 𝑦  +  1 )  ∈  ℕ0 ) | 
						
							| 2 |  | peano2nn0 | ⊢ ( ( 𝑦  +  1 )  ∈  ℕ0  →  ( ( 𝑦  +  1 )  +  1 )  ∈  ℕ0 ) | 
						
							| 3 |  | fmtno | ⊢ ( ( ( 𝑦  +  1 )  +  1 )  ∈  ℕ0  →  ( FermatNo ‘ ( ( 𝑦  +  1 )  +  1 ) )  =  ( ( 2 ↑ ( 2 ↑ ( ( 𝑦  +  1 )  +  1 ) ) )  +  1 ) ) | 
						
							| 4 | 1 2 3 | 3syl | ⊢ ( 𝑦  ∈  ℕ0  →  ( FermatNo ‘ ( ( 𝑦  +  1 )  +  1 ) )  =  ( ( 2 ↑ ( 2 ↑ ( ( 𝑦  +  1 )  +  1 ) ) )  +  1 ) ) | 
						
							| 5 |  | 2cnd | ⊢ ( 𝑦  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 6 | 5 1 | expp1d | ⊢ ( 𝑦  ∈  ℕ0  →  ( 2 ↑ ( ( 𝑦  +  1 )  +  1 ) )  =  ( ( 2 ↑ ( 𝑦  +  1 ) )  ·  2 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑦  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ ( ( 𝑦  +  1 )  +  1 ) ) )  =  ( 2 ↑ ( ( 2 ↑ ( 𝑦  +  1 ) )  ·  2 ) ) ) | 
						
							| 8 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑦  ∈  ℕ0  →  2  ∈  ℕ0 ) | 
						
							| 10 | 9 1 | nn0expcld | ⊢ ( 𝑦  ∈  ℕ0  →  ( 2 ↑ ( 𝑦  +  1 ) )  ∈  ℕ0 ) | 
						
							| 11 | 9 10 | nn0expcld | ⊢ ( 𝑦  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ ( 𝑦  +  1 ) ) )  ∈  ℕ0 ) | 
						
							| 12 | 11 | nn0cnd | ⊢ ( 𝑦  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ ( 𝑦  +  1 ) ) )  ∈  ℂ ) | 
						
							| 13 | 12 | sqvald | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( 2 ↑ ( 2 ↑ ( 𝑦  +  1 ) ) ) ↑ 2 )  =  ( ( 2 ↑ ( 2 ↑ ( 𝑦  +  1 ) ) )  ·  ( 2 ↑ ( 2 ↑ ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 14 | 5 9 10 | expmuld | ⊢ ( 𝑦  ∈  ℕ0  →  ( 2 ↑ ( ( 2 ↑ ( 𝑦  +  1 ) )  ·  2 ) )  =  ( ( 2 ↑ ( 2 ↑ ( 𝑦  +  1 ) ) ) ↑ 2 ) ) | 
						
							| 15 |  | fmtnom1nn | ⊢ ( ( 𝑦  +  1 )  ∈  ℕ0  →  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  =  ( 2 ↑ ( 2 ↑ ( 𝑦  +  1 ) ) ) ) | 
						
							| 16 | 1 15 | syl | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  =  ( 2 ↑ ( 2 ↑ ( 𝑦  +  1 ) ) ) ) | 
						
							| 17 | 16 16 | oveq12d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  =  ( ( 2 ↑ ( 2 ↑ ( 𝑦  +  1 ) ) )  ·  ( 2 ↑ ( 2 ↑ ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 18 | 13 14 17 | 3eqtr4d | ⊢ ( 𝑦  ∈  ℕ0  →  ( 2 ↑ ( ( 2 ↑ ( 𝑦  +  1 ) )  ·  2 ) )  =  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) ) | 
						
							| 19 | 7 18 | eqtrd | ⊢ ( 𝑦  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ ( ( 𝑦  +  1 )  +  1 ) ) )  =  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( 2 ↑ ( 2 ↑ ( ( 𝑦  +  1 )  +  1 ) ) )  +  1 )  =  ( ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 ) ) | 
						
							| 21 | 4 20 | eqtrd | ⊢ ( 𝑦  ∈  ℕ0  →  ( FermatNo ‘ ( ( 𝑦  +  1 )  +  1 ) )  =  ( ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 ) )  →  ( FermatNo ‘ ( ( 𝑦  +  1 )  +  1 ) )  =  ( ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  →  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  =  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  →  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  =  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  →  ( ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 ) )  →  ( ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 ) ) | 
						
							| 27 |  | fzfid | ⊢ ( 𝑦  ∈  ℕ0  →  ( 0 ... 𝑦 )  ∈  Fin ) | 
						
							| 28 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... 𝑦 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 29 |  | fmtnonn | ⊢ ( 𝑛  ∈  ℕ0  →  ( FermatNo ‘ 𝑛 )  ∈  ℕ ) | 
						
							| 30 | 29 | nncnd | ⊢ ( 𝑛  ∈  ℕ0  →  ( FermatNo ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 31 | 28 30 | syl | ⊢ ( 𝑛  ∈  ( 0 ... 𝑦 )  →  ( FermatNo ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝑛  ∈  ( 0 ... 𝑦 ) )  →  ( FermatNo ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 33 | 27 32 | fprodcl | ⊢ ( 𝑦  ∈  ℕ0  →  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 34 |  | 1cnd | ⊢ ( 𝑦  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 35 | 33 5 34 | addsubassd | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  ( 2  −  1 ) ) ) | 
						
							| 36 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 37 | 36 | oveq2i | ⊢ ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  ( 2  −  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  1 ) | 
						
							| 38 | 35 37 | eqtrdi | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  1 ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  =  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) ) | 
						
							| 40 |  | fmtnonn | ⊢ ( ( 𝑦  +  1 )  ∈  ℕ0  →  ( FermatNo ‘ ( 𝑦  +  1 ) )  ∈  ℕ ) | 
						
							| 41 | 1 40 | syl | ⊢ ( 𝑦  ∈  ℕ0  →  ( FermatNo ‘ ( 𝑦  +  1 ) )  ∈  ℕ ) | 
						
							| 42 | 41 | nncnd | ⊢ ( 𝑦  ∈  ℕ0  →  ( FermatNo ‘ ( 𝑦  +  1 ) )  ∈  ℂ ) | 
						
							| 43 | 42 34 | subcld | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  ∈  ℂ ) | 
						
							| 44 | 33 42 | muls1d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  =  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) ) | 
						
							| 45 | 43 | mullidd | ⊢ ( 𝑦  ∈  ℕ0  →  ( 1  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  =  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) | 
						
							| 46 | 44 45 | oveq12d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  ( 1  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) )  =  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) ) | 
						
							| 47 | 33 43 34 46 | joinlmuladdmuld | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  =  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) ) | 
						
							| 48 | 39 47 | eqtrd | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  =  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 ) )  →  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  =  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 ) )  →  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 ) ) | 
						
							| 51 |  | eqcom | ⊢ ( ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  ↔  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  =  ( FermatNo ‘ ( 𝑦  +  1 ) ) ) | 
						
							| 52 | 42 5 33 | subadd2d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 )  =  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ↔  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  =  ( FermatNo ‘ ( 𝑦  +  1 ) ) ) ) | 
						
							| 53 | 51 52 | bitr4id | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  ↔  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 )  =  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) ) | 
						
							| 54 |  | oveq2 | ⊢ ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  =  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 )  →  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  =  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) ) ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  =  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 )  →  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  =  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) ) ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  =  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 )  →  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 ) ) | 
						
							| 57 | 56 | eqcoms | ⊢ ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 )  =  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  →  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 ) ) | 
						
							| 58 | 33 42 | mulcld | ⊢ ( 𝑦  ∈  ℕ0  →  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  ∈  ℂ ) | 
						
							| 59 | 42 5 | subcld | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 )  ∈  ℂ ) | 
						
							| 60 | 58 59 | subcld | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  ∈  ℂ ) | 
						
							| 61 | 60 43 34 | addassd | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  +  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  +  1 ) ) ) | 
						
							| 62 |  | elnn0uz | ⊢ ( 𝑦  ∈  ℕ0  ↔  𝑦  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 63 | 62 | biimpi | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 64 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 65 | 64 30 | syl | ⊢ ( 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) )  →  ( FermatNo ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) )  →  ( FermatNo ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 67 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑦  +  1 )  →  ( FermatNo ‘ 𝑛 )  =  ( FermatNo ‘ ( 𝑦  +  1 ) ) ) | 
						
							| 68 | 63 66 67 | fprodp1 | ⊢ ( 𝑦  ∈  ℕ0  →  ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) ) ) | 
						
							| 69 | 68 | eqcomd | ⊢ ( 𝑦  ∈  ℕ0  →  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  =  ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) ) ) | 
						
							| 71 |  | npcan1 | ⊢ ( ( FermatNo ‘ ( 𝑦  +  1 ) )  ∈  ℂ  →  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  +  1 )  =  ( FermatNo ‘ ( 𝑦  +  1 ) ) ) | 
						
							| 72 | 42 71 | syl | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  +  1 )  =  ( FermatNo ‘ ( 𝑦  +  1 ) ) ) | 
						
							| 73 | 70 72 | oveq12d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  +  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  +  1 ) )  =  ( ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  +  ( FermatNo ‘ ( 𝑦  +  1 ) ) ) ) | 
						
							| 74 |  | fzfid | ⊢ ( 𝑦  ∈  ℕ0  →  ( 0 ... ( 𝑦  +  1 ) )  ∈  Fin ) | 
						
							| 75 | 74 66 | fprodcl | ⊢ ( 𝑦  ∈  ℕ0  →  ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 76 | 75 59 42 | subadd23d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  +  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) ) ) ) | 
						
							| 77 | 73 76 | eqtrd | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  +  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 )  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) ) ) ) | 
						
							| 78 | 42 5 | nncand | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  =  2 ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) ) )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  2 ) ) | 
						
							| 80 | 61 77 79 | 3eqtrd | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  2 ) ) | 
						
							| 81 | 57 80 | sylan9eqr | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 )  =  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  →  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  2 ) ) | 
						
							| 82 | 81 | ex | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  2 )  =  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  →  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  2 ) ) ) | 
						
							| 83 | 53 82 | sylbid | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  →  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  2 ) ) ) | 
						
							| 84 | 83 | imp | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 ) )  →  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  ·  ( FermatNo ‘ ( 𝑦  +  1 ) ) )  −  ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) )  +  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  2 ) ) | 
						
							| 85 | 50 84 | eqtrd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 ) )  →  ( ( ( ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  −  1 )  ·  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  −  1 ) )  +  1 )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  2 ) ) | 
						
							| 86 | 22 26 85 | 3eqtrd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 ) )  →  ( FermatNo ‘ ( ( 𝑦  +  1 )  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  2 ) ) | 
						
							| 87 | 86 | ex | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( FermatNo ‘ ( 𝑦  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 )  +  2 )  →  ( FermatNo ‘ ( ( 𝑦  +  1 )  +  1 ) )  =  ( ∏ 𝑛  ∈  ( 0 ... ( 𝑦  +  1 ) ) ( FermatNo ‘ 𝑛 )  +  2 ) ) ) |