| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2nn0 |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 2 |
|
peano2nn0 |
⊢ ( ( 𝑦 + 1 ) ∈ ℕ0 → ( ( 𝑦 + 1 ) + 1 ) ∈ ℕ0 ) |
| 3 |
|
fmtno |
⊢ ( ( ( 𝑦 + 1 ) + 1 ) ∈ ℕ0 → ( FermatNo ‘ ( ( 𝑦 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 2 ↑ ( ( 𝑦 + 1 ) + 1 ) ) ) + 1 ) ) |
| 4 |
1 2 3
|
3syl |
⊢ ( 𝑦 ∈ ℕ0 → ( FermatNo ‘ ( ( 𝑦 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 2 ↑ ( ( 𝑦 + 1 ) + 1 ) ) ) + 1 ) ) |
| 5 |
|
2cnd |
⊢ ( 𝑦 ∈ ℕ0 → 2 ∈ ℂ ) |
| 6 |
5 1
|
expp1d |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ ( ( 𝑦 + 1 ) + 1 ) ) = ( ( 2 ↑ ( 𝑦 + 1 ) ) · 2 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ ( ( 𝑦 + 1 ) + 1 ) ) ) = ( 2 ↑ ( ( 2 ↑ ( 𝑦 + 1 ) ) · 2 ) ) ) |
| 8 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 9 |
8
|
a1i |
⊢ ( 𝑦 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 10 |
9 1
|
nn0expcld |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ ( 𝑦 + 1 ) ) ∈ ℕ0 ) |
| 11 |
9 10
|
nn0expcld |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ ( 𝑦 + 1 ) ) ) ∈ ℕ0 ) |
| 12 |
11
|
nn0cnd |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ ( 𝑦 + 1 ) ) ) ∈ ℂ ) |
| 13 |
12
|
sqvald |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 2 ↑ ( 2 ↑ ( 𝑦 + 1 ) ) ) ↑ 2 ) = ( ( 2 ↑ ( 2 ↑ ( 𝑦 + 1 ) ) ) · ( 2 ↑ ( 2 ↑ ( 𝑦 + 1 ) ) ) ) ) |
| 14 |
5 9 10
|
expmuld |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ ( ( 2 ↑ ( 𝑦 + 1 ) ) · 2 ) ) = ( ( 2 ↑ ( 2 ↑ ( 𝑦 + 1 ) ) ) ↑ 2 ) ) |
| 15 |
|
fmtnom1nn |
⊢ ( ( 𝑦 + 1 ) ∈ ℕ0 → ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) = ( 2 ↑ ( 2 ↑ ( 𝑦 + 1 ) ) ) ) |
| 16 |
1 15
|
syl |
⊢ ( 𝑦 ∈ ℕ0 → ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) = ( 2 ↑ ( 2 ↑ ( 𝑦 + 1 ) ) ) ) |
| 17 |
16 16
|
oveq12d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) = ( ( 2 ↑ ( 2 ↑ ( 𝑦 + 1 ) ) ) · ( 2 ↑ ( 2 ↑ ( 𝑦 + 1 ) ) ) ) ) |
| 18 |
13 14 17
|
3eqtr4d |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ ( ( 2 ↑ ( 𝑦 + 1 ) ) · 2 ) ) = ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 19 |
7 18
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ ( ( 𝑦 + 1 ) + 1 ) ) ) = ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 2 ↑ ( 2 ↑ ( ( 𝑦 + 1 ) + 1 ) ) ) + 1 ) = ( ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) ) |
| 21 |
4 20
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ0 → ( FermatNo ‘ ( ( 𝑦 + 1 ) + 1 ) ) = ( ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) ) → ( FermatNo ‘ ( ( 𝑦 + 1 ) + 1 ) ) = ( ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) ) |
| 23 |
|
oveq1 |
⊢ ( ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) → ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) = ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) ) |
| 24 |
23
|
oveq1d |
⊢ ( ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) → ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) = ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 25 |
24
|
oveq1d |
⊢ ( ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) → ( ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) ) → ( ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) ) |
| 27 |
|
fzfid |
⊢ ( 𝑦 ∈ ℕ0 → ( 0 ... 𝑦 ) ∈ Fin ) |
| 28 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... 𝑦 ) → 𝑛 ∈ ℕ0 ) |
| 29 |
|
fmtnonn |
⊢ ( 𝑛 ∈ ℕ0 → ( FermatNo ‘ 𝑛 ) ∈ ℕ ) |
| 30 |
29
|
nncnd |
⊢ ( 𝑛 ∈ ℕ0 → ( FermatNo ‘ 𝑛 ) ∈ ℂ ) |
| 31 |
28 30
|
syl |
⊢ ( 𝑛 ∈ ( 0 ... 𝑦 ) → ( FermatNo ‘ 𝑛 ) ∈ ℂ ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ ( 0 ... 𝑦 ) ) → ( FermatNo ‘ 𝑛 ) ∈ ℂ ) |
| 33 |
27 32
|
fprodcl |
⊢ ( 𝑦 ∈ ℕ0 → ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ∈ ℂ ) |
| 34 |
|
1cnd |
⊢ ( 𝑦 ∈ ℕ0 → 1 ∈ ℂ ) |
| 35 |
33 5 34
|
addsubassd |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + ( 2 − 1 ) ) ) |
| 36 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 37 |
36
|
oveq2i |
⊢ ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + ( 2 − 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 1 ) |
| 38 |
35 37
|
eqtrdi |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 1 ) ) |
| 39 |
38
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) = ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 40 |
|
fmtnonn |
⊢ ( ( 𝑦 + 1 ) ∈ ℕ0 → ( FermatNo ‘ ( 𝑦 + 1 ) ) ∈ ℕ ) |
| 41 |
1 40
|
syl |
⊢ ( 𝑦 ∈ ℕ0 → ( FermatNo ‘ ( 𝑦 + 1 ) ) ∈ ℕ ) |
| 42 |
41
|
nncnd |
⊢ ( 𝑦 ∈ ℕ0 → ( FermatNo ‘ ( 𝑦 + 1 ) ) ∈ ℂ ) |
| 43 |
42 34
|
subcld |
⊢ ( 𝑦 ∈ ℕ0 → ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ∈ ℂ ) |
| 44 |
33 42
|
muls1d |
⊢ ( 𝑦 ∈ ℕ0 → ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) = ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) ) |
| 45 |
43
|
mullidd |
⊢ ( 𝑦 ∈ ℕ0 → ( 1 · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) = ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) |
| 46 |
44 45
|
oveq12d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + ( 1 · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) ) = ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 47 |
33 43 34 46
|
joinlmuladdmuld |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) = ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 48 |
39 47
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) = ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) ) → ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) = ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 50 |
49
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) ) → ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) ) |
| 51 |
|
eqcom |
⊢ ( ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) ↔ ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) = ( FermatNo ‘ ( 𝑦 + 1 ) ) ) |
| 52 |
42 5 33
|
subadd2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) = ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ↔ ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) = ( FermatNo ‘ ( 𝑦 + 1 ) ) ) ) |
| 53 |
51 52
|
bitr4id |
⊢ ( 𝑦 ∈ ℕ0 → ( ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) ↔ ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) = ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) ) |
| 54 |
|
oveq2 |
⊢ ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) = ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) → ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) = ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) ) |
| 55 |
54
|
oveq1d |
⊢ ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) = ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) → ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) = ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 56 |
55
|
oveq1d |
⊢ ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) = ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) → ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) ) |
| 57 |
56
|
eqcoms |
⊢ ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) = ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) → ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) ) |
| 58 |
33 42
|
mulcld |
⊢ ( 𝑦 ∈ ℕ0 → ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) ∈ ℂ ) |
| 59 |
42 5
|
subcld |
⊢ ( 𝑦 ∈ ℕ0 → ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ∈ ℂ ) |
| 60 |
58 59
|
subcld |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) ∈ ℂ ) |
| 61 |
60 43 34
|
addassd |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) + ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) + 1 ) ) ) |
| 62 |
|
elnn0uz |
⊢ ( 𝑦 ∈ ℕ0 ↔ 𝑦 ∈ ( ℤ≥ ‘ 0 ) ) |
| 63 |
62
|
biimpi |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ( ℤ≥ ‘ 0 ) ) |
| 64 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) → 𝑛 ∈ ℕ0 ) |
| 65 |
64 30
|
syl |
⊢ ( 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) → ( FermatNo ‘ 𝑛 ) ∈ ℂ ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ) → ( FermatNo ‘ 𝑛 ) ∈ ℂ ) |
| 67 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑦 + 1 ) → ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ ( 𝑦 + 1 ) ) ) |
| 68 |
63 66 67
|
fprodp1 |
⊢ ( 𝑦 ∈ ℕ0 → ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) ) |
| 69 |
68
|
eqcomd |
⊢ ( 𝑦 ∈ ℕ0 → ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) = ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) ) |
| 70 |
69
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) ) |
| 71 |
|
npcan1 |
⊢ ( ( FermatNo ‘ ( 𝑦 + 1 ) ) ∈ ℂ → ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) + 1 ) = ( FermatNo ‘ ( 𝑦 + 1 ) ) ) |
| 72 |
42 71
|
syl |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) + 1 ) = ( FermatNo ‘ ( 𝑦 + 1 ) ) ) |
| 73 |
70 72
|
oveq12d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) + ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) + 1 ) ) = ( ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) + ( FermatNo ‘ ( 𝑦 + 1 ) ) ) ) |
| 74 |
|
fzfid |
⊢ ( 𝑦 ∈ ℕ0 → ( 0 ... ( 𝑦 + 1 ) ) ∈ Fin ) |
| 75 |
74 66
|
fprodcl |
⊢ ( 𝑦 ∈ ℕ0 → ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) ∈ ℂ ) |
| 76 |
75 59 42
|
subadd23d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) + ( FermatNo ‘ ( 𝑦 + 1 ) ) ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) ) ) |
| 77 |
73 76
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) + ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) ) ) |
| 78 |
42 5
|
nncand |
⊢ ( 𝑦 ∈ ℕ0 → ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) = 2 ) |
| 79 |
78
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + 2 ) ) |
| 80 |
61 77 79
|
3eqtrd |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + 2 ) ) |
| 81 |
57 80
|
sylan9eqr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) = ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) → ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + 2 ) ) |
| 82 |
81
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 2 ) = ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) → ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + 2 ) ) ) |
| 83 |
53 82
|
sylbid |
⊢ ( 𝑦 ∈ ℕ0 → ( ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) → ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + 2 ) ) ) |
| 84 |
83
|
imp |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) ) → ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) · ( FermatNo ‘ ( 𝑦 + 1 ) ) ) − ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) ) + ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + 2 ) ) |
| 85 |
50 84
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) ) → ( ( ( ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) − 1 ) · ( ( FermatNo ‘ ( 𝑦 + 1 ) ) − 1 ) ) + 1 ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + 2 ) ) |
| 86 |
22 26 85
|
3eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) ) → ( FermatNo ‘ ( ( 𝑦 + 1 ) + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + 2 ) ) |
| 87 |
86
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( ( FermatNo ‘ ( 𝑦 + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... 𝑦 ) ( FermatNo ‘ 𝑛 ) + 2 ) → ( FermatNo ‘ ( ( 𝑦 + 1 ) + 1 ) ) = ( ∏ 𝑛 ∈ ( 0 ... ( 𝑦 + 1 ) ) ( FermatNo ‘ 𝑛 ) + 2 ) ) ) |