| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmssuvc1.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
frlmssuvc1.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
| 3 |
|
frlmssuvc1.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 4 |
|
frlmssuvc1.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 5 |
|
frlmssuvc1.t |
⊢ · = ( ·𝑠 ‘ 𝐹 ) |
| 6 |
|
frlmssuvc1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 7 |
|
frlmssuvc1.c |
⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 supp 0 ) ⊆ 𝐽 } |
| 8 |
|
frlmssuvc1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 |
|
frlmssuvc1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 10 |
|
frlmssuvc1.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 11 |
|
frlmssuvc1.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝐽 ) |
| 12 |
|
frlmssuvc1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
| 13 |
1
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝐹 ∈ LMod ) |
| 14 |
8 9 13
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ LMod ) |
| 15 |
|
eqid |
⊢ ( LSubSp ‘ 𝐹 ) = ( LSubSp ‘ 𝐹 ) |
| 16 |
1 15 3 6 7
|
frlmsslss2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 ∈ ( LSubSp ‘ 𝐹 ) ) |
| 17 |
8 9 10 16
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ ( LSubSp ‘ 𝐹 ) ) |
| 18 |
1
|
frlmsca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
| 19 |
8 9 18
|
syl2anc |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
| 21 |
4 20
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
| 22 |
12 21
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
| 23 |
2 1 3
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
| 24 |
8 9 23
|
syl2anc |
⊢ ( 𝜑 → 𝑈 : 𝐼 ⟶ 𝐵 ) |
| 25 |
10 11
|
sseldd |
⊢ ( 𝜑 → 𝐿 ∈ 𝐼 ) |
| 26 |
24 25
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐿 ) ∈ 𝐵 ) |
| 27 |
1 4 3
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑈 ‘ 𝐿 ) ∈ 𝐵 ) → ( 𝑈 ‘ 𝐿 ) : 𝐼 ⟶ 𝐾 ) |
| 28 |
9 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐿 ) : 𝐼 ⟶ 𝐾 ) |
| 29 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝑅 ∈ Ring ) |
| 30 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝐼 ∈ 𝑉 ) |
| 31 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝐿 ∈ 𝐼 ) |
| 32 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) → 𝑥 ∈ 𝐼 ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝑥 ∈ 𝐼 ) |
| 34 |
|
disjdif |
⊢ ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ |
| 35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) |
| 36 |
|
disjne |
⊢ ( ( ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ ∧ 𝐿 ∈ 𝐽 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝐿 ≠ 𝑥 ) |
| 37 |
34 11 35 36
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝐿 ≠ 𝑥 ) |
| 38 |
2 29 30 31 33 37 6
|
uvcvv0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑈 ‘ 𝐿 ) ‘ 𝑥 ) = 0 ) |
| 39 |
28 38
|
suppss |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝐿 ) supp 0 ) ⊆ 𝐽 ) |
| 40 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝐿 ) → ( 𝑥 supp 0 ) = ( ( 𝑈 ‘ 𝐿 ) supp 0 ) ) |
| 41 |
40
|
sseq1d |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝐿 ) → ( ( 𝑥 supp 0 ) ⊆ 𝐽 ↔ ( ( 𝑈 ‘ 𝐿 ) supp 0 ) ⊆ 𝐽 ) ) |
| 42 |
41 7
|
elrab2 |
⊢ ( ( 𝑈 ‘ 𝐿 ) ∈ 𝐶 ↔ ( ( 𝑈 ‘ 𝐿 ) ∈ 𝐵 ∧ ( ( 𝑈 ‘ 𝐿 ) supp 0 ) ⊆ 𝐽 ) ) |
| 43 |
26 39 42
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐿 ) ∈ 𝐶 ) |
| 44 |
|
eqid |
⊢ ( Scalar ‘ 𝐹 ) = ( Scalar ‘ 𝐹 ) |
| 45 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐹 ) ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) |
| 46 |
44 5 45 15
|
lssvscl |
⊢ ( ( ( 𝐹 ∈ LMod ∧ 𝐶 ∈ ( LSubSp ‘ 𝐹 ) ) ∧ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ ( 𝑈 ‘ 𝐿 ) ∈ 𝐶 ) ) → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐶 ) |
| 47 |
14 17 22 43 46
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐶 ) |