| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgt750lemf.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | hgt750lemf.p | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 3 |  | hgt750lemf.q | ⊢ ( 𝜑  →  𝑄  ∈  ℝ ) | 
						
							| 4 |  | hgt750lemf.h | ⊢ ( 𝜑  →  𝐻 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 5 |  | hgt750lemf.k | ⊢ ( 𝜑  →  𝐾 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 6 |  | hgt750lemf.0 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 0 )  ∈  ℕ ) | 
						
							| 7 |  | hgt750lemf.1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 1 )  ∈  ℕ ) | 
						
							| 8 |  | hgt750lemf.2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 2 )  ∈  ℕ ) | 
						
							| 9 |  | hgt750lemf.3 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐾 ‘ 𝑚 )  ≤  𝑃 ) | 
						
							| 10 |  | hgt750lemf.4 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐻 ‘ 𝑚 )  ≤  𝑄 ) | 
						
							| 11 |  | vmaf | ⊢ Λ : ℕ ⟶ ℝ | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  Λ : ℕ ⟶ ℝ ) | 
						
							| 13 | 12 6 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 0 ) )  ∈  ℝ ) | 
						
							| 14 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 15 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  𝐻 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 16 | 15 6 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 17 | 14 16 | sselid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ∈  ℝ ) | 
						
							| 18 | 13 17 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )  ∈  ℝ ) | 
						
							| 19 | 12 7 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 20 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  𝐾 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 21 | 20 7 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 22 | 14 21 | sselid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 23 | 19 22 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )  ∈  ℝ ) | 
						
							| 24 | 12 8 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 2 ) )  ∈  ℝ ) | 
						
							| 25 | 20 8 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 26 | 14 25 | sselid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) )  ∈  ℝ ) | 
						
							| 27 | 24 26 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 2 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) )  ∈  ℝ ) | 
						
							| 28 | 23 27 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 2 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) )  ∈  ℝ ) | 
						
							| 29 | 18 28 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )  ·  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 2 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) )  ∈  ℝ ) | 
						
							| 30 | 2 | resqcld | ⊢ ( 𝜑  →  ( 𝑃 ↑ 2 )  ∈  ℝ ) | 
						
							| 31 | 30 3 | remulcld | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 2 )  ·  𝑄 )  ∈  ℝ ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝑃 ↑ 2 )  ·  𝑄 )  ∈  ℝ ) | 
						
							| 33 | 19 24 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) )  ∈  ℝ ) | 
						
							| 34 | 13 33 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ∈  ℝ ) | 
						
							| 35 | 32 34 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( 𝑃 ↑ 2 )  ·  𝑄 )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) )  ∈  ℝ ) | 
						
							| 36 | 13 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 0 ) )  ∈  ℂ ) | 
						
							| 37 | 33 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) )  ∈  ℂ ) | 
						
							| 38 | 17 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ∈  ℂ ) | 
						
							| 39 | 22 26 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) )  ∈  ℝ ) | 
						
							| 40 | 39 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) )  ∈  ℂ ) | 
						
							| 41 | 36 37 38 40 | mul4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ·  ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) )  =  ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )  ·  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) | 
						
							| 42 | 36 37 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ∈  ℂ ) | 
						
							| 43 | 38 40 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) )  ∈  ℂ ) | 
						
							| 44 | 42 43 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ·  ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) )  =  ( ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) | 
						
							| 45 | 19 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 1 ) )  ∈  ℂ ) | 
						
							| 46 | 24 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 2 ) )  ∈  ℂ ) | 
						
							| 47 | 22 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ∈  ℂ ) | 
						
							| 48 | 26 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) )  ∈  ℂ ) | 
						
							| 49 | 45 46 47 48 | mul4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) )  =  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 2 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )  ·  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) )  =  ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )  ·  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 2 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) | 
						
							| 51 | 41 44 50 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) )  =  ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )  ·  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 2 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) | 
						
							| 52 | 17 39 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) )  ∈  ℝ ) | 
						
							| 53 |  | vmage0 | ⊢ ( ( 𝑛 ‘ 0 )  ∈  ℕ  →  0  ≤  ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) | 
						
							| 54 | 6 53 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) | 
						
							| 55 |  | vmage0 | ⊢ ( ( 𝑛 ‘ 1 )  ∈  ℕ  →  0  ≤  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) | 
						
							| 56 | 7 55 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) | 
						
							| 57 |  | vmage0 | ⊢ ( ( 𝑛 ‘ 2 )  ∈  ℕ  →  0  ≤  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) | 
						
							| 58 | 8 57 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) | 
						
							| 59 | 19 24 56 58 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) | 
						
							| 60 | 13 33 54 59 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) | 
						
							| 61 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  𝑄  ∈  ℝ ) | 
						
							| 62 | 2 2 | remulcld | ⊢ ( 𝜑  →  ( 𝑃  ·  𝑃 )  ∈  ℝ ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑃  ·  𝑃 )  ∈  ℝ ) | 
						
							| 64 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 65 | 64 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ∈  ℝ* ) | 
						
							| 66 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 67 | 66 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  +∞  ∈  ℝ* ) | 
						
							| 68 |  | icogelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ∈  ( 0 [,) +∞ ) )  →  0  ≤  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) | 
						
							| 69 | 65 67 16 68 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) | 
						
							| 70 |  | icogelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ∈  ( 0 [,) +∞ ) )  →  0  ≤  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) | 
						
							| 71 | 65 67 21 70 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) | 
						
							| 72 |  | icogelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) )  ∈  ( 0 [,) +∞ ) )  →  0  ≤  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) | 
						
							| 73 | 65 67 25 72 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) | 
						
							| 74 | 22 26 71 73 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛 ‘ 0 )  →  ( 𝐻 ‘ 𝑚 )  =  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) | 
						
							| 76 | 75 | breq1d | ⊢ ( 𝑚  =  ( 𝑛 ‘ 0 )  →  ( ( 𝐻 ‘ 𝑚 )  ≤  𝑄  ↔  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ≤  𝑄 ) ) | 
						
							| 77 | 10 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ℕ ( 𝐻 ‘ 𝑚 )  ≤  𝑄 ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ∀ 𝑚  ∈  ℕ ( 𝐻 ‘ 𝑚 )  ≤  𝑄 ) | 
						
							| 79 | 76 78 6 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ≤  𝑄 ) | 
						
							| 80 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  𝑃  ∈  ℝ ) | 
						
							| 81 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛 ‘ 1 )  →  ( 𝐾 ‘ 𝑚 )  =  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) | 
						
							| 82 | 81 | breq1d | ⊢ ( 𝑚  =  ( 𝑛 ‘ 1 )  →  ( ( 𝐾 ‘ 𝑚 )  ≤  𝑃  ↔  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ≤  𝑃 ) ) | 
						
							| 83 | 9 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ℕ ( 𝐾 ‘ 𝑚 )  ≤  𝑃 ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ∀ 𝑚  ∈  ℕ ( 𝐾 ‘ 𝑚 )  ≤  𝑃 ) | 
						
							| 85 | 82 84 7 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ≤  𝑃 ) | 
						
							| 86 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛 ‘ 2 )  →  ( 𝐾 ‘ 𝑚 )  =  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) | 
						
							| 87 | 86 | breq1d | ⊢ ( 𝑚  =  ( 𝑛 ‘ 2 )  →  ( ( 𝐾 ‘ 𝑚 )  ≤  𝑃  ↔  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) )  ≤  𝑃 ) ) | 
						
							| 88 | 87 84 8 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) )  ≤  𝑃 ) | 
						
							| 89 | 22 80 26 80 71 73 85 88 | lemul12ad | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) )  ≤  ( 𝑃  ·  𝑃 ) ) | 
						
							| 90 | 17 61 39 63 69 74 79 89 | lemul12ad | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) )  ≤  ( 𝑄  ·  ( 𝑃  ·  𝑃 ) ) ) | 
						
							| 91 | 30 | recnd | ⊢ ( 𝜑  →  ( 𝑃 ↑ 2 )  ∈  ℂ ) | 
						
							| 92 | 3 | recnd | ⊢ ( 𝜑  →  𝑄  ∈  ℂ ) | 
						
							| 93 | 91 92 | mulcomd | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 2 )  ·  𝑄 )  =  ( 𝑄  ·  ( 𝑃 ↑ 2 ) ) ) | 
						
							| 94 | 2 | recnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 95 | 94 | sqvald | ⊢ ( 𝜑  →  ( 𝑃 ↑ 2 )  =  ( 𝑃  ·  𝑃 ) ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( 𝜑  →  ( 𝑄  ·  ( 𝑃 ↑ 2 ) )  =  ( 𝑄  ·  ( 𝑃  ·  𝑃 ) ) ) | 
						
							| 97 | 93 96 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 2 )  ·  𝑄 )  =  ( 𝑄  ·  ( 𝑃  ·  𝑃 ) ) ) | 
						
							| 98 | 97 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝑃 ↑ 2 )  ·  𝑄 )  =  ( 𝑄  ·  ( 𝑃  ·  𝑃 ) ) ) | 
						
							| 99 | 90 98 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) )  ≤  ( ( 𝑃 ↑ 2 )  ·  𝑄 ) ) | 
						
							| 100 | 52 32 34 60 99 | lemul1ad | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) )  ≤  ( ( ( 𝑃 ↑ 2 )  ·  𝑄 )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) | 
						
							| 101 | 51 100 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )  ·  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 2 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) )  ≤  ( ( ( 𝑃 ↑ 2 )  ·  𝑄 )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) | 
						
							| 102 | 1 29 35 101 | fsumle | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝐴 ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )  ·  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 2 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) )  ≤  Σ 𝑛  ∈  𝐴 ( ( ( 𝑃 ↑ 2 )  ·  𝑄 )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) | 
						
							| 103 | 31 | recnd | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 2 )  ·  𝑄 )  ∈  ℂ ) | 
						
							| 104 | 34 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ∈  ℂ ) | 
						
							| 105 | 1 103 104 | fsummulc2 | ⊢ ( 𝜑  →  ( ( ( 𝑃 ↑ 2 )  ·  𝑄 )  ·  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) )  =  Σ 𝑛  ∈  𝐴 ( ( ( 𝑃 ↑ 2 )  ·  𝑄 )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) | 
						
							| 106 | 102 105 | breqtrrd | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝐴 ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )  ·  ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 2 ) )  ·  ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) )  ≤  ( ( ( 𝑃 ↑ 2 )  ·  𝑄 )  ·  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ) |