Metamath Proof Explorer


Theorem hgt750lemf

Description: Lemma for the statement 7.50 of Helfgott p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses hgt750lemf.a ( 𝜑𝐴 ∈ Fin )
hgt750lemf.p ( 𝜑𝑃 ∈ ℝ )
hgt750lemf.q ( 𝜑𝑄 ∈ ℝ )
hgt750lemf.h ( 𝜑𝐻 : ℕ ⟶ ( 0 [,) +∞ ) )
hgt750lemf.k ( 𝜑𝐾 : ℕ ⟶ ( 0 [,) +∞ ) )
hgt750lemf.0 ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℕ )
hgt750lemf.1 ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℕ )
hgt750lemf.2 ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℕ )
hgt750lemf.3 ( ( 𝜑𝑚 ∈ ℕ ) → ( 𝐾𝑚 ) ≤ 𝑃 )
hgt750lemf.4 ( ( 𝜑𝑚 ∈ ℕ ) → ( 𝐻𝑚 ) ≤ 𝑄 )
Assertion hgt750lemf ( 𝜑 → Σ 𝑛𝐴 ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≤ ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 hgt750lemf.a ( 𝜑𝐴 ∈ Fin )
2 hgt750lemf.p ( 𝜑𝑃 ∈ ℝ )
3 hgt750lemf.q ( 𝜑𝑄 ∈ ℝ )
4 hgt750lemf.h ( 𝜑𝐻 : ℕ ⟶ ( 0 [,) +∞ ) )
5 hgt750lemf.k ( 𝜑𝐾 : ℕ ⟶ ( 0 [,) +∞ ) )
6 hgt750lemf.0 ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℕ )
7 hgt750lemf.1 ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℕ )
8 hgt750lemf.2 ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℕ )
9 hgt750lemf.3 ( ( 𝜑𝑚 ∈ ℕ ) → ( 𝐾𝑚 ) ≤ 𝑃 )
10 hgt750lemf.4 ( ( 𝜑𝑚 ∈ ℕ ) → ( 𝐻𝑚 ) ≤ 𝑄 )
11 vmaf Λ : ℕ ⟶ ℝ
12 11 a1i ( ( 𝜑𝑛𝐴 ) → Λ : ℕ ⟶ ℝ )
13 12 6 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℝ )
14 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
15 4 adantr ( ( 𝜑𝑛𝐴 ) → 𝐻 : ℕ ⟶ ( 0 [,) +∞ ) )
16 15 6 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ∈ ( 0 [,) +∞ ) )
17 14 16 sseldi ( ( 𝜑𝑛𝐴 ) → ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ∈ ℝ )
18 13 17 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) ∈ ℝ )
19 12 7 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℝ )
20 5 adantr ( ( 𝜑𝑛𝐴 ) → 𝐾 : ℕ ⟶ ( 0 [,) +∞ ) )
21 20 7 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ∈ ( 0 [,) +∞ ) )
22 14 21 sseldi ( ( 𝜑𝑛𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ∈ ℝ )
23 19 22 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℝ )
24 12 8 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ )
25 20 8 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ∈ ( 0 [,) +∞ ) )
26 14 25 sseldi ( ( 𝜑𝑛𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ )
27 24 26 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℝ )
28 23 27 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ )
29 18 28 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℝ )
30 2 resqcld ( 𝜑 → ( 𝑃 ↑ 2 ) ∈ ℝ )
31 30 3 remulcld ( 𝜑 → ( ( 𝑃 ↑ 2 ) · 𝑄 ) ∈ ℝ )
32 31 adantr ( ( 𝜑𝑛𝐴 ) → ( ( 𝑃 ↑ 2 ) · 𝑄 ) ∈ ℝ )
33 19 24 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℝ )
34 13 33 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ )
35 32 34 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ∈ ℝ )
36 13 recnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℂ )
37 33 recnd ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℂ )
38 17 recnd ( ( 𝜑𝑛𝐴 ) → ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ∈ ℂ )
39 22 26 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℝ )
40 39 recnd ( ( 𝜑𝑛𝐴 ) → ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℂ )
41 36 37 38 40 mul4d ( ( 𝜑𝑛𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) · ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) )
42 36 37 mulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℂ )
43 38 40 mulcld ( ( 𝜑𝑛𝐴 ) → ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℂ )
44 42 43 mulcomd ( ( 𝜑𝑛𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) · ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = ( ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) )
45 19 recnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℂ )
46 24 recnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ∈ ℂ )
47 22 recnd ( ( 𝜑𝑛𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ∈ ℂ )
48 26 recnd ( ( 𝜑𝑛𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ∈ ℂ )
49 45 46 47 48 mul4d ( ( 𝜑𝑛𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) )
50 49 oveq2d ( ( 𝜑𝑛𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) )
51 41 44 50 3eqtr3d ( ( 𝜑𝑛𝐴 ) → ( ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) )
52 17 39 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ )
53 vmage0 ( ( 𝑛 ‘ 0 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 0 ) ) )
54 6 53 syl ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 0 ) ) )
55 vmage0 ( ( 𝑛 ‘ 1 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 1 ) ) )
56 7 55 syl ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 1 ) ) )
57 vmage0 ( ( 𝑛 ‘ 2 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 2 ) ) )
58 8 57 syl ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 2 ) ) )
59 19 24 56 58 mulge0d ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )
60 13 33 54 59 mulge0d ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) )
61 3 adantr ( ( 𝜑𝑛𝐴 ) → 𝑄 ∈ ℝ )
62 2 2 remulcld ( 𝜑 → ( 𝑃 · 𝑃 ) ∈ ℝ )
63 62 adantr ( ( 𝜑𝑛𝐴 ) → ( 𝑃 · 𝑃 ) ∈ ℝ )
64 0xr 0 ∈ ℝ*
65 64 a1i ( ( 𝜑𝑛𝐴 ) → 0 ∈ ℝ* )
66 pnfxr +∞ ∈ ℝ*
67 66 a1i ( ( 𝜑𝑛𝐴 ) → +∞ ∈ ℝ* )
68 icogelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )
69 65 67 16 68 syl3anc ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )
70 icogelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )
71 65 67 21 70 syl3anc ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )
72 icogelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) )
73 65 67 25 72 syl3anc ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) )
74 22 26 71 73 mulge0d ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) )
75 fveq2 ( 𝑚 = ( 𝑛 ‘ 0 ) → ( 𝐻𝑚 ) = ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) )
76 75 breq1d ( 𝑚 = ( 𝑛 ‘ 0 ) → ( ( 𝐻𝑚 ) ≤ 𝑄 ↔ ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ≤ 𝑄 ) )
77 10 ralrimiva ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝐻𝑚 ) ≤ 𝑄 )
78 77 adantr ( ( 𝜑𝑛𝐴 ) → ∀ 𝑚 ∈ ℕ ( 𝐻𝑚 ) ≤ 𝑄 )
79 76 78 6 rspcdva ( ( 𝜑𝑛𝐴 ) → ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ≤ 𝑄 )
80 2 adantr ( ( 𝜑𝑛𝐴 ) → 𝑃 ∈ ℝ )
81 fveq2 ( 𝑚 = ( 𝑛 ‘ 1 ) → ( 𝐾𝑚 ) = ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) )
82 81 breq1d ( 𝑚 = ( 𝑛 ‘ 1 ) → ( ( 𝐾𝑚 ) ≤ 𝑃 ↔ ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ≤ 𝑃 ) )
83 9 ralrimiva ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝐾𝑚 ) ≤ 𝑃 )
84 83 adantr ( ( 𝜑𝑛𝐴 ) → ∀ 𝑚 ∈ ℕ ( 𝐾𝑚 ) ≤ 𝑃 )
85 82 84 7 rspcdva ( ( 𝜑𝑛𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ≤ 𝑃 )
86 fveq2 ( 𝑚 = ( 𝑛 ‘ 2 ) → ( 𝐾𝑚 ) = ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) )
87 86 breq1d ( 𝑚 = ( 𝑛 ‘ 2 ) → ( ( 𝐾𝑚 ) ≤ 𝑃 ↔ ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ≤ 𝑃 ) )
88 87 84 8 rspcdva ( ( 𝜑𝑛𝐴 ) → ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ≤ 𝑃 )
89 22 80 26 80 71 73 85 88 lemul12ad ( ( 𝜑𝑛𝐴 ) → ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ≤ ( 𝑃 · 𝑃 ) )
90 17 61 39 63 69 74 79 89 lemul12ad ( ( 𝜑𝑛𝐴 ) → ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( 𝑄 · ( 𝑃 · 𝑃 ) ) )
91 30 recnd ( 𝜑 → ( 𝑃 ↑ 2 ) ∈ ℂ )
92 3 recnd ( 𝜑𝑄 ∈ ℂ )
93 91 92 mulcomd ( 𝜑 → ( ( 𝑃 ↑ 2 ) · 𝑄 ) = ( 𝑄 · ( 𝑃 ↑ 2 ) ) )
94 2 recnd ( 𝜑𝑃 ∈ ℂ )
95 94 sqvald ( 𝜑 → ( 𝑃 ↑ 2 ) = ( 𝑃 · 𝑃 ) )
96 95 oveq2d ( 𝜑 → ( 𝑄 · ( 𝑃 ↑ 2 ) ) = ( 𝑄 · ( 𝑃 · 𝑃 ) ) )
97 93 96 eqtrd ( 𝜑 → ( ( 𝑃 ↑ 2 ) · 𝑄 ) = ( 𝑄 · ( 𝑃 · 𝑃 ) ) )
98 97 adantr ( ( 𝜑𝑛𝐴 ) → ( ( 𝑃 ↑ 2 ) · 𝑄 ) = ( 𝑄 · ( 𝑃 · 𝑃 ) ) )
99 90 98 breqtrrd ( ( 𝜑𝑛𝐴 ) → ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( 𝑃 ↑ 2 ) · 𝑄 ) )
100 52 32 34 60 99 lemul1ad ( ( 𝜑𝑛𝐴 ) → ( ( ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) · ( ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≤ ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) )
101 51 100 eqbrtrrd ( ( 𝜑𝑛𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≤ ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) )
102 1 29 35 101 fsumle ( 𝜑 → Σ 𝑛𝐴 ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≤ Σ 𝑛𝐴 ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) )
103 31 recnd ( 𝜑 → ( ( 𝑃 ↑ 2 ) · 𝑄 ) ∈ ℂ )
104 34 recnd ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℂ )
105 1 103 104 fsummulc2 ( 𝜑 → ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) = Σ 𝑛𝐴 ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) )
106 102 105 breqtrrd ( 𝜑 → Σ 𝑛𝐴 ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( 𝐻 ‘ ( 𝑛 ‘ 0 ) ) ) · ( ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 1 ) ) ) · ( ( Λ ‘ ( 𝑛 ‘ 2 ) ) · ( 𝐾 ‘ ( 𝑛 ‘ 2 ) ) ) ) ) ≤ ( ( ( 𝑃 ↑ 2 ) · 𝑄 ) · Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ) )