Step |
Hyp |
Ref |
Expression |
1 |
|
iprodclim3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iprodclim3.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
iprodclim3.3 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝑦 ) ) |
4 |
|
iprodclim3.4 |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |
5 |
|
iprodclim3.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
6 |
|
iprodclim3.6 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 ) |
7 |
|
climdm |
⊢ ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
8 |
4 7
|
sylib |
⊢ ( 𝜑 → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
9 |
|
prodfc |
⊢ ∏ 𝑚 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝑍 𝐴 |
10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
11 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ℂ ) |
12 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
13 |
1 2 3 10 12
|
iprod |
⊢ ( 𝜑 → ∏ 𝑚 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) ) |
14 |
9 13
|
eqtr3id |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) ) |
15 |
|
seqex |
⊢ seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ∈ V ) |
17 |
|
fvres |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
18 |
|
fzssuz |
⊢ ( 𝑀 ... 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) |
19 |
18 1
|
sseqtrri |
⊢ ( 𝑀 ... 𝑗 ) ⊆ 𝑍 |
20 |
|
resmpt |
⊢ ( ( 𝑀 ... 𝑗 ) ⊆ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ) |
21 |
19 20
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) |
22 |
21
|
fveq1i |
⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) |
23 |
17 22
|
eqtr3di |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) ) |
24 |
23
|
prodeq2i |
⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) |
25 |
|
prodfc |
⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 |
26 |
24 25
|
eqtri |
⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 |
27 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
29 |
28 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
30 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
31 |
30 1
|
eleqtrrdi |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → 𝑚 ∈ 𝑍 ) |
32 |
31 12
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
33 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
34 |
27 29 33
|
fprodser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑗 ) ) |
35 |
26 34
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 = ( seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑗 ) ) |
36 |
6 35
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
37 |
1 16 4 2 36
|
climeq |
⊢ ( 𝜑 → ( seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥 ) ) |
38 |
37
|
iotabidv |
⊢ ( 𝜑 → ( ℩ 𝑥 seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝑥 ) = ( ℩ 𝑥 𝐹 ⇝ 𝑥 ) ) |
39 |
|
df-fv |
⊢ ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) = ( ℩ 𝑥 seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝑥 ) |
40 |
|
df-fv |
⊢ ( ⇝ ‘ 𝐹 ) = ( ℩ 𝑥 𝐹 ⇝ 𝑥 ) |
41 |
38 39 40
|
3eqtr4g |
⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) = ( ⇝ ‘ 𝐹 ) ) |
42 |
14 41
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ 𝐹 ) ) |
43 |
8 42
|
breqtrrd |
⊢ ( 𝜑 → 𝐹 ⇝ ∏ 𝑘 ∈ 𝑍 𝐴 ) |