Metamath Proof Explorer


Theorem iprodclim3

Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that j must not occur in A . (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodclim3.1 𝑍 = ( ℤ𝑀 )
iprodclim3.2 ( 𝜑𝑀 ∈ ℤ )
iprodclim3.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘𝑍𝐴 ) ) ⇝ 𝑦 ) )
iprodclim3.4 ( 𝜑𝐹 ∈ dom ⇝ )
iprodclim3.5 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
iprodclim3.6 ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 )
Assertion iprodclim3 ( 𝜑𝐹 ⇝ ∏ 𝑘𝑍 𝐴 )

Proof

Step Hyp Ref Expression
1 iprodclim3.1 𝑍 = ( ℤ𝑀 )
2 iprodclim3.2 ( 𝜑𝑀 ∈ ℤ )
3 iprodclim3.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘𝑍𝐴 ) ) ⇝ 𝑦 ) )
4 iprodclim3.4 ( 𝜑𝐹 ∈ dom ⇝ )
5 iprodclim3.5 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
6 iprodclim3.6 ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 )
7 climdm ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) )
8 4 7 sylib ( 𝜑𝐹 ⇝ ( ⇝ ‘ 𝐹 ) )
9 prodfc 𝑚𝑍 ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) = ∏ 𝑘𝑍 𝐴
10 eqidd ( ( 𝜑𝑚𝑍 ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) = ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) )
11 5 fmpttd ( 𝜑 → ( 𝑘𝑍𝐴 ) : 𝑍 ⟶ ℂ )
12 11 ffvelrnda ( ( 𝜑𝑚𝑍 ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) ∈ ℂ )
13 1 2 3 10 12 iprod ( 𝜑 → ∏ 𝑚𝑍 ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ) )
14 9 13 eqtr3id ( 𝜑 → ∏ 𝑘𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ) )
15 seqex seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ∈ V
16 15 a1i ( 𝜑 → seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ∈ V )
17 fvres ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → ( ( ( 𝑘𝑍𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) ‘ 𝑚 ) = ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) )
18 fzssuz ( 𝑀 ... 𝑗 ) ⊆ ( ℤ𝑀 )
19 18 1 sseqtrri ( 𝑀 ... 𝑗 ) ⊆ 𝑍
20 resmpt ( ( 𝑀 ... 𝑗 ) ⊆ 𝑍 → ( ( 𝑘𝑍𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) )
21 19 20 ax-mp ( ( 𝑘𝑍𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 )
22 21 fveq1i ( ( ( 𝑘𝑍𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 )
23 17 22 eqtr3di ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) )
24 23 prodeq2i 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 )
25 prodfc 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴
26 24 25 eqtri 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴
27 eqidd ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) = ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) )
28 simpr ( ( 𝜑𝑗𝑍 ) → 𝑗𝑍 )
29 28 1 eleqtrdi ( ( 𝜑𝑗𝑍 ) → 𝑗 ∈ ( ℤ𝑀 ) )
30 elfzuz ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → 𝑚 ∈ ( ℤ𝑀 ) )
31 30 1 eleqtrrdi ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → 𝑚𝑍 )
32 31 12 sylan2 ( ( 𝜑𝑚 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) ∈ ℂ )
33 32 adantlr ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) ∈ ℂ )
34 27 29 33 fprodser ( ( 𝜑𝑗𝑍 ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘𝑍𝐴 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ‘ 𝑗 ) )
35 26 34 eqtr3id ( ( 𝜑𝑗𝑍 ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 = ( seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ‘ 𝑗 ) )
36 6 35 eqtr2d ( ( 𝜑𝑗𝑍 ) → ( seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ‘ 𝑗 ) = ( 𝐹𝑗 ) )
37 1 16 4 2 36 climeq ( 𝜑 → ( seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ⇝ 𝑥𝐹𝑥 ) )
38 37 iotabidv ( 𝜑 → ( ℩ 𝑥 seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ⇝ 𝑥 ) = ( ℩ 𝑥 𝐹𝑥 ) )
39 df-fv ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ) = ( ℩ 𝑥 seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ⇝ 𝑥 )
40 df-fv ( ⇝ ‘ 𝐹 ) = ( ℩ 𝑥 𝐹𝑥 )
41 38 39 40 3eqtr4g ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , ( 𝑘𝑍𝐴 ) ) ) = ( ⇝ ‘ 𝐹 ) )
42 14 41 eqtrd ( 𝜑 → ∏ 𝑘𝑍 𝐴 = ( ⇝ ‘ 𝐹 ) )
43 8 42 breqtrrd ( 𝜑𝐹 ⇝ ∏ 𝑘𝑍 𝐴 )