Metamath Proof Explorer


Theorem itg1val2

Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion itg1val2 ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1𝐹 ) = Σ 𝑥𝐴 ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) )

Proof

Step Hyp Ref Expression
1 itg1val ( 𝐹 ∈ dom ∫1 → ( ∫1𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) )
2 1 adantr ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) )
3 simpr2 ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴 )
4 3 sselda ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥𝐴 )
5 simpr3 ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → 𝐴 ⊆ ( ℝ ∖ { 0 } ) )
6 5 sselda ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ( ℝ ∖ { 0 } ) )
7 eldifi ( 𝑥 ∈ ( ℝ ∖ { 0 } ) → 𝑥 ∈ ℝ )
8 6 7 syl ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ℝ )
9 i1fima2sn ( ( 𝐹 ∈ dom ∫1𝑥 ∈ ( ℝ ∖ { 0 } ) ) → ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ℝ )
10 9 adantlr ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( ℝ ∖ { 0 } ) ) → ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ℝ )
11 6 10 syldan ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥𝐴 ) → ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ℝ )
12 8 11 remulcld ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥𝐴 ) → ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ℝ )
13 12 recnd ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥𝐴 ) → ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ℂ )
14 4 13 syldan ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ℂ )
15 i1ff ( 𝐹 ∈ dom ∫1𝐹 : ℝ ⟶ ℝ )
16 15 ad2antrr ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐹 : ℝ ⟶ ℝ )
17 ffrn ( 𝐹 : ℝ ⟶ ℝ → 𝐹 : ℝ ⟶ ran 𝐹 )
18 16 17 syl ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐹 : ℝ ⟶ ran 𝐹 )
19 eldifn ( 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) → ¬ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) )
20 19 adantl ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ¬ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) )
21 eldif ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ { 0 } ) )
22 simplr3 ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐴 ⊆ ( ℝ ∖ { 0 } ) )
23 22 ssdifssd ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ⊆ ( ℝ ∖ { 0 } ) )
24 simpr ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) )
25 23 24 sseldd ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ( ℝ ∖ { 0 } ) )
26 eldifn ( 𝑥 ∈ ( ℝ ∖ { 0 } ) → ¬ 𝑥 ∈ { 0 } )
27 25 26 syl ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ¬ 𝑥 ∈ { 0 } )
28 27 biantrud ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 ∈ ran 𝐹 ↔ ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ { 0 } ) ) )
29 21 28 bitr4id ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ 𝑥 ∈ ran 𝐹 ) )
30 20 29 mtbid ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ¬ 𝑥 ∈ ran 𝐹 )
31 disjsn ( ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹 )
32 30 31 sylibr ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( ran 𝐹 ∩ { 𝑥 } ) = ∅ )
33 fimacnvdisj ( ( 𝐹 : ℝ ⟶ ran 𝐹 ∧ ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) → ( 𝐹 “ { 𝑥 } ) = ∅ )
34 18 32 33 syl2anc ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝐹 “ { 𝑥 } ) = ∅ )
35 34 fveq2d ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) = ( vol ‘ ∅ ) )
36 0mbl ∅ ∈ dom vol
37 mblvol ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) )
38 36 37 ax-mp ( vol ‘ ∅ ) = ( vol* ‘ ∅ )
39 ovol0 ( vol* ‘ ∅ ) = 0
40 38 39 eqtri ( vol ‘ ∅ ) = 0
41 35 40 eqtrdi ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) = 0 )
42 41 oveq2d ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) = ( 𝑥 · 0 ) )
43 eldifi ( 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥𝐴 )
44 43 8 sylan2 ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ℝ )
45 44 recnd ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑥 ∈ ℂ )
46 45 mul01d ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 · 0 ) = 0 )
47 42 46 eqtrd ( ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) = 0 )
48 simpr1 ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → 𝐴 ∈ Fin )
49 3 14 47 48 fsumss ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) = Σ 𝑥𝐴 ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) )
50 2 49 eqtrd ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ 𝐴𝐴 ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1𝐹 ) = Σ 𝑥𝐴 ( 𝑥 · ( vol ‘ ( 𝐹 “ { 𝑥 } ) ) ) )