| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmfgsplit.z |
⊢ 0 = ( 0g ‘ 𝑇 ) |
| 2 |
|
lmhmfgsplit.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
| 3 |
|
lmhmfgsplit.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝐾 ) |
| 4 |
|
lmhmfgsplit.v |
⊢ 𝑉 = ( 𝑇 ↾s ran 𝐹 ) |
| 5 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) → 𝑉 ∈ LFinGen ) |
| 6 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) → 𝑇 ∈ LMod ) |
| 8 |
|
lmhmrnlss |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑇 ) ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑇 ) ) |
| 10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑇 ) = ( LSubSp ‘ 𝑇 ) |
| 11 |
|
eqid |
⊢ ( LSpan ‘ 𝑇 ) = ( LSpan ‘ 𝑇 ) |
| 12 |
4 10 11
|
islssfg |
⊢ ( ( 𝑇 ∈ LMod ∧ ran 𝐹 ∈ ( LSubSp ‘ 𝑇 ) ) → ( 𝑉 ∈ LFinGen ↔ ∃ 𝑎 ∈ 𝒫 ran 𝐹 ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) |
| 13 |
7 9 12
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) → ( 𝑉 ∈ LFinGen ↔ ∃ 𝑎 ∈ 𝒫 ran 𝐹 ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) |
| 14 |
5 13
|
mpbid |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) → ∃ 𝑎 ∈ 𝒫 ran 𝐹 ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) |
| 15 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 18 |
16 17
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 19 |
|
ffn |
⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 20 |
15 18 19
|
3syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 21 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 ran 𝐹 → 𝑎 ⊆ ran 𝐹 ) |
| 22 |
21
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) → 𝑎 ⊆ ran 𝐹 ) |
| 23 |
|
simprrl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) → 𝑎 ∈ Fin ) |
| 24 |
|
fipreima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝑎 ⊆ ran 𝐹 ∧ 𝑎 ∈ Fin ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ( 𝐹 “ 𝑏 ) = 𝑎 ) |
| 25 |
20 22 23 24
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) → ∃ 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ( 𝐹 “ 𝑏 ) = 𝑎 ) |
| 26 |
|
eqid |
⊢ ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 ) |
| 27 |
|
eqid |
⊢ ( LSSum ‘ 𝑆 ) = ( LSSum ‘ 𝑆 ) |
| 28 |
|
simpll1 |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 29 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
| 30 |
29
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) → 𝑆 ∈ LMod ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → 𝑆 ∈ LMod ) |
| 32 |
|
inss1 |
⊢ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ⊆ 𝒫 ( Base ‘ 𝑆 ) |
| 33 |
32
|
sseli |
⊢ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) → 𝑏 ∈ 𝒫 ( Base ‘ 𝑆 ) ) |
| 34 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 ( Base ‘ 𝑆 ) → 𝑏 ⊆ ( Base ‘ 𝑆 ) ) |
| 35 |
33 34
|
syl |
⊢ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) → 𝑏 ⊆ ( Base ‘ 𝑆 ) ) |
| 36 |
35
|
ad2antrl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → 𝑏 ⊆ ( Base ‘ 𝑆 ) ) |
| 37 |
|
eqid |
⊢ ( LSpan ‘ 𝑆 ) = ( LSpan ‘ 𝑆 ) |
| 38 |
16 26 37
|
lspcl |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑏 ⊆ ( Base ‘ 𝑆 ) ) → ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 39 |
31 36 38
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 40 |
16 37 11
|
lmhmlsp |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑏 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑏 ) ) ) |
| 41 |
28 36 40
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑏 ) ) ) |
| 42 |
|
fveq2 |
⊢ ( ( 𝐹 “ 𝑏 ) = 𝑎 → ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑏 ) ) = ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) ) |
| 43 |
42
|
ad2antll |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐹 “ 𝑏 ) ) = ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) ) |
| 44 |
|
simp2rr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) |
| 45 |
44
|
3expa |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) |
| 46 |
41 43 45
|
3eqtrd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( 𝐹 “ ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) = ran 𝐹 ) |
| 47 |
26 27 1 2 16 28 39 46
|
kercvrlsm |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( 𝐾 ( LSSum ‘ 𝑆 ) ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) = ( Base ‘ 𝑆 ) ) |
| 48 |
47
|
oveq2d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( 𝑆 ↾s ( 𝐾 ( LSSum ‘ 𝑆 ) ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) ) = ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) |
| 49 |
16
|
ressid |
⊢ ( 𝑆 ∈ LMod → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
| 50 |
30 49
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
| 51 |
50
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
| 52 |
48 51
|
eqtr2d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → 𝑆 = ( 𝑆 ↾s ( 𝐾 ( LSSum ‘ 𝑆 ) ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) ) ) |
| 53 |
|
eqid |
⊢ ( 𝑆 ↾s ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) = ( 𝑆 ↾s ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) |
| 54 |
|
eqid |
⊢ ( 𝑆 ↾s ( 𝐾 ( LSSum ‘ 𝑆 ) ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) ) = ( 𝑆 ↾s ( 𝐾 ( LSSum ‘ 𝑆 ) ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) ) |
| 55 |
2 1 26
|
lmhmkerlss |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐾 ∈ ( LSubSp ‘ 𝑆 ) ) |
| 56 |
55
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) → 𝐾 ∈ ( LSubSp ‘ 𝑆 ) ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → 𝐾 ∈ ( LSubSp ‘ 𝑆 ) ) |
| 58 |
|
simpll2 |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → 𝑈 ∈ LFinGen ) |
| 59 |
|
inss2 |
⊢ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ⊆ Fin |
| 60 |
59
|
sseli |
⊢ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) → 𝑏 ∈ Fin ) |
| 61 |
60
|
ad2antrl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → 𝑏 ∈ Fin ) |
| 62 |
37 16 53
|
islssfgi |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑏 ⊆ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ Fin ) → ( 𝑆 ↾s ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) ∈ LFinGen ) |
| 63 |
31 36 61 62
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( 𝑆 ↾s ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) ∈ LFinGen ) |
| 64 |
26 27 3 53 54 31 57 39 58 63
|
lsmfgcl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → ( 𝑆 ↾s ( 𝐾 ( LSSum ‘ 𝑆 ) ( ( LSpan ‘ 𝑆 ) ‘ 𝑏 ) ) ) ∈ LFinGen ) |
| 65 |
52 64
|
eqeltrd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( Base ‘ 𝑆 ) ∩ Fin ) ∧ ( 𝐹 “ 𝑏 ) = 𝑎 ) ) → 𝑆 ∈ LFinGen ) |
| 66 |
25 65
|
rexlimddv |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) ∧ ( 𝑎 ∈ 𝒫 ran 𝐹 ∧ ( 𝑎 ∈ Fin ∧ ( ( LSpan ‘ 𝑇 ) ‘ 𝑎 ) = ran 𝐹 ) ) ) → 𝑆 ∈ LFinGen ) |
| 67 |
14 66
|
rexlimddv |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ LFinGen ∧ 𝑉 ∈ LFinGen ) → 𝑆 ∈ LFinGen ) |