| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metf1o.2 | ⊢ 𝑁  =  ( 𝑥  ∈  𝑌 ,  𝑦  ∈  𝑌  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 2 |  | f1of | ⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 3 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝑥  ∈  𝑌 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑋 ) | 
						
							| 4 | 3 | ex | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝑥  ∈  𝑌  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑋 ) ) | 
						
							| 5 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝑦  ∈  𝑌 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝑋 ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝑦  ∈  𝑌  →  ( 𝐹 ‘ 𝑦 )  ∈  𝑋 ) ) | 
						
							| 7 | 4 6 | anim12d | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑋 ) ) ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋  →  ( ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑋 ) ) ) | 
						
							| 9 |  | metcl | ⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 10 | 9 | 3expib | ⊢ ( 𝑀  ∈  ( Met ‘ 𝑋 )  →  ( ( ( 𝐹 ‘ 𝑥 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) ) | 
						
							| 11 | 8 10 | sylan9r | ⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  →  ( ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) ) | 
						
							| 12 | 11 | 3adant1 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  →  ( ( 𝑥  ∈  𝑌  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) ) | 
						
							| 13 | 12 | ralrimivv | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  →  ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 14 | 1 | fmpo | ⊢ ( ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ  ↔  𝑁 : ( 𝑌  ×  𝑌 ) ⟶ ℝ ) | 
						
							| 15 | 13 14 | sylib | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  →  𝑁 : ( 𝑌  ×  𝑌 ) ⟶ ℝ ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑥  =  𝑢  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( 𝑥  =  𝑢  →  ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 20 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ∈  V | 
						
							| 21 | 17 19 1 20 | ovmpo | ⊢ ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  →  ( 𝑢 𝑁 𝑣 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  →  ( ( 𝑢 𝑁 𝑣 )  =  0  ↔  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  =  0 ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( ( 𝑢 𝑁 𝑣 )  =  0  ↔  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  =  0 ) ) | 
						
							| 24 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝑢  ∈  𝑌 )  →  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝑢  ∈  𝑌  →  ( 𝐹 ‘ 𝑢 )  ∈  𝑋 ) ) | 
						
							| 26 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝑣  ∈  𝑌 )  →  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 ) | 
						
							| 27 | 26 | ex | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝑣  ∈  𝑌  →  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 ) ) | 
						
							| 28 | 25 27 | anim12d | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 ) ) ) | 
						
							| 29 | 2 28 | syl | ⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋  →  ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 ) ) ) | 
						
							| 30 | 29 | imp | ⊢ ( ( 𝐹 : 𝑌 –1-1-onto→ 𝑋  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 ) ) | 
						
							| 31 | 30 | adantll | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 ) ) | 
						
							| 32 |  | meteq0 | ⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 )  →  ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  =  0  ↔  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 33 | 32 | 3expb | ⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 ) )  →  ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  =  0  ↔  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 34 | 33 | adantlr | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 ) )  →  ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  =  0  ↔  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 35 | 31 34 | syldan | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  =  0  ↔  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 36 |  | f1of1 | ⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋  →  𝐹 : 𝑌 –1-1→ 𝑋 ) | 
						
							| 37 |  | f1fveq | ⊢ ( ( 𝐹 : 𝑌 –1-1→ 𝑋  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 )  ↔  𝑢  =  𝑣 ) ) | 
						
							| 38 | 36 37 | sylan | ⊢ ( ( 𝐹 : 𝑌 –1-1-onto→ 𝑋  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 )  ↔  𝑢  =  𝑣 ) ) | 
						
							| 39 | 38 | adantll | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 )  ↔  𝑢  =  𝑣 ) ) | 
						
							| 40 | 23 35 39 | 3bitrd | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( ( 𝑢 𝑁 𝑣 )  =  0  ↔  𝑢  =  𝑣 ) ) | 
						
							| 41 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝑤  ∈  𝑌 )  →  ( 𝐹 ‘ 𝑤 )  ∈  𝑋 ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝑤  ∈  𝑌  →  ( 𝐹 ‘ 𝑤 )  ∈  𝑋 ) ) | 
						
							| 43 | 28 42 | anim12d | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  ∧  𝑤  ∈  𝑌 )  →  ( ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝑋 ) ) ) | 
						
							| 44 | 2 43 | syl | ⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋  →  ( ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  ∧  𝑤  ∈  𝑌 )  →  ( ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝑋 ) ) ) | 
						
							| 45 | 44 | imp | ⊢ ( ( 𝐹 : 𝑌 –1-1-onto→ 𝑋  ∧  ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝑋 ) ) | 
						
							| 46 | 45 | adantll | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  ∧  𝑤  ∈  𝑌 ) )  →  ( ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝑋 ) ) | 
						
							| 47 |  | mettri2 | ⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ( ( 𝐹 ‘ 𝑤 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ≤  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 48 | 47 | expcom | ⊢ ( ( ( 𝐹 ‘ 𝑤 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 )  →  ( 𝑀  ∈  ( Met ‘ 𝑋 )  →  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ≤  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) | 
						
							| 49 | 48 | 3expb | ⊢ ( ( ( 𝐹 ‘ 𝑤 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 ) )  →  ( 𝑀  ∈  ( Met ‘ 𝑋 )  →  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ≤  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) | 
						
							| 50 | 49 | ancoms | ⊢ ( ( ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝑋 )  →  ( 𝑀  ∈  ( Met ‘ 𝑋 )  →  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ≤  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) | 
						
							| 51 | 50 | impcom | ⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ( ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ≤  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 52 | 51 | adantlr | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( ( ( 𝐹 ‘ 𝑢 )  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑣 )  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ≤  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 53 | 46 52 | syldan | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  ∧  𝑤  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ≤  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 54 | 53 | anassrs | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  ∧  𝑤  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ≤  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 55 | 21 | adantr | ⊢ ( ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  ∧  𝑤  ∈  𝑌 )  →  ( 𝑢 𝑁 𝑣 )  =  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 57 | 56 | oveq1d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑦  =  𝑢  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( 𝑦  =  𝑢  →  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 60 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  ∈  V | 
						
							| 61 | 57 59 1 60 | ovmpo | ⊢ ( ( 𝑤  ∈  𝑌  ∧  𝑢  ∈  𝑌 )  →  ( 𝑤 𝑁 𝑢 )  =  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 62 | 61 | ancoms | ⊢ ( ( 𝑢  ∈  𝑌  ∧  𝑤  ∈  𝑌 )  →  ( 𝑤 𝑁 𝑢 )  =  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 63 | 62 | adantlr | ⊢ ( ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  ∧  𝑤  ∈  𝑌 )  →  ( 𝑤 𝑁 𝑢 )  =  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 64 | 18 | oveq2d | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 65 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ∈  V | 
						
							| 66 | 57 64 1 65 | ovmpo | ⊢ ( ( 𝑤  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  →  ( 𝑤 𝑁 𝑣 )  =  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 67 | 66 | ancoms | ⊢ ( ( 𝑣  ∈  𝑌  ∧  𝑤  ∈  𝑌 )  →  ( 𝑤 𝑁 𝑣 )  =  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 68 | 67 | adantll | ⊢ ( ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  ∧  𝑤  ∈  𝑌 )  →  ( 𝑤 𝑁 𝑣 )  =  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 69 | 63 68 | oveq12d | ⊢ ( ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  ∧  𝑤  ∈  𝑌 )  →  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) )  =  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 70 | 55 69 | breq12d | ⊢ ( ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  ∧  𝑤  ∈  𝑌 )  →  ( ( 𝑢 𝑁 𝑣 )  ≤  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) )  ↔  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ≤  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) | 
						
							| 71 | 70 | adantll | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  ∧  𝑤  ∈  𝑌 )  →  ( ( 𝑢 𝑁 𝑣 )  ≤  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) )  ↔  ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) )  ≤  ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) )  +  ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) | 
						
							| 72 | 54 71 | mpbird | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  ∧  𝑤  ∈  𝑌 )  →  ( 𝑢 𝑁 𝑣 )  ≤  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) ) ) | 
						
							| 73 | 72 | ralrimiva | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ∀ 𝑤  ∈  𝑌 ( 𝑢 𝑁 𝑣 )  ≤  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) ) ) | 
						
							| 74 | 40 73 | jca | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( ( ( 𝑢 𝑁 𝑣 )  =  0  ↔  𝑢  =  𝑣 )  ∧  ∀ 𝑤  ∈  𝑌 ( 𝑢 𝑁 𝑣 )  ≤  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) ) ) ) | 
						
							| 75 | 74 | 3adantl1 | ⊢ ( ( ( 𝑌  ∈  𝐴  ∧  𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  ∧  ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 ) )  →  ( ( ( 𝑢 𝑁 𝑣 )  =  0  ↔  𝑢  =  𝑣 )  ∧  ∀ 𝑤  ∈  𝑌 ( 𝑢 𝑁 𝑣 )  ≤  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) ) ) ) | 
						
							| 76 | 75 | ex | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  →  ( ( 𝑢  ∈  𝑌  ∧  𝑣  ∈  𝑌 )  →  ( ( ( 𝑢 𝑁 𝑣 )  =  0  ↔  𝑢  =  𝑣 )  ∧  ∀ 𝑤  ∈  𝑌 ( 𝑢 𝑁 𝑣 )  ≤  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) ) ) ) ) | 
						
							| 77 | 76 | ralrimivv | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  →  ∀ 𝑢  ∈  𝑌 ∀ 𝑣  ∈  𝑌 ( ( ( 𝑢 𝑁 𝑣 )  =  0  ↔  𝑢  =  𝑣 )  ∧  ∀ 𝑤  ∈  𝑌 ( 𝑢 𝑁 𝑣 )  ≤  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) ) ) ) | 
						
							| 78 |  | ismet | ⊢ ( 𝑌  ∈  𝐴  →  ( 𝑁  ∈  ( Met ‘ 𝑌 )  ↔  ( 𝑁 : ( 𝑌  ×  𝑌 ) ⟶ ℝ  ∧  ∀ 𝑢  ∈  𝑌 ∀ 𝑣  ∈  𝑌 ( ( ( 𝑢 𝑁 𝑣 )  =  0  ↔  𝑢  =  𝑣 )  ∧  ∀ 𝑤  ∈  𝑌 ( 𝑢 𝑁 𝑣 )  ≤  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) ) ) ) ) ) | 
						
							| 79 | 78 | 3ad2ant1 | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  →  ( 𝑁  ∈  ( Met ‘ 𝑌 )  ↔  ( 𝑁 : ( 𝑌  ×  𝑌 ) ⟶ ℝ  ∧  ∀ 𝑢  ∈  𝑌 ∀ 𝑣  ∈  𝑌 ( ( ( 𝑢 𝑁 𝑣 )  =  0  ↔  𝑢  =  𝑣 )  ∧  ∀ 𝑤  ∈  𝑌 ( 𝑢 𝑁 𝑣 )  ≤  ( ( 𝑤 𝑁 𝑢 )  +  ( 𝑤 𝑁 𝑣 ) ) ) ) ) ) | 
						
							| 80 | 15 77 79 | mpbir2and | ⊢ ( ( 𝑌  ∈  𝐴  ∧  𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝐹 : 𝑌 –1-1-onto→ 𝑋 )  →  𝑁  ∈  ( Met ‘ 𝑌 ) ) |