Step |
Hyp |
Ref |
Expression |
1 |
|
metf1o.2 |
⊢ 𝑁 = ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑌 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ) |
2 |
|
f1of |
⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 → 𝐹 : 𝑌 ⟶ 𝑋 ) |
3 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
4 |
3
|
ex |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑥 ∈ 𝑌 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) |
5 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) |
6 |
5
|
ex |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑦 ∈ 𝑌 → ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) ) |
7 |
4 6
|
anim12d |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) ) ) |
8 |
2 7
|
syl |
⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) ) ) |
9 |
|
metcl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
10 |
9
|
3expib |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) ) |
11 |
8 10
|
sylan9r |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) ) |
12 |
11
|
3adant1 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) ) |
13 |
12
|
ralrimivv |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
14 |
1
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ↔ 𝑁 : ( 𝑌 × 𝑌 ) ⟶ ℝ ) |
15 |
13 14
|
sylib |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → 𝑁 : ( 𝑌 × 𝑌 ) ⟶ ℝ ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑢 ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑣 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
20 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ∈ V |
21 |
17 19 1 20
|
ovmpo |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( 𝑢 𝑁 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
22 |
21
|
eqeq1d |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ) ) |
24 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑢 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) |
25 |
24
|
ex |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑢 ∈ 𝑌 → ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) |
26 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑣 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) |
27 |
26
|
ex |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑣 ∈ 𝑌 → ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) |
28 |
25 27
|
anim12d |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) ) |
29 |
2 28
|
syl |
⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) ) |
30 |
29
|
imp |
⊢ ( ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) |
31 |
30
|
adantll |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) |
32 |
|
meteq0 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ↔ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
33 |
32
|
3expb |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ↔ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
34 |
33
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ↔ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
35 |
31 34
|
syldan |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ↔ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
36 |
|
f1of1 |
⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 → 𝐹 : 𝑌 –1-1→ 𝑋 ) |
37 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑌 –1-1→ 𝑋 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ 𝑢 = 𝑣 ) ) |
38 |
36 37
|
sylan |
⊢ ( ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ 𝑢 = 𝑣 ) ) |
39 |
38
|
adantll |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ 𝑢 = 𝑣 ) ) |
40 |
23 35 39
|
3bitrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ) |
41 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑤 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) |
42 |
41
|
ex |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑤 ∈ 𝑌 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) |
43 |
28 42
|
anim12d |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) ) |
44 |
2 43
|
syl |
⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) ) |
45 |
44
|
imp |
⊢ ( ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 ∧ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) |
46 |
45
|
adantll |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) |
47 |
|
mettri2 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
48 |
47
|
expcom |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) → ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
49 |
48
|
3expb |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) → ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
50 |
49
|
ancoms |
⊢ ( ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) → ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
51 |
50
|
impcom |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
52 |
51
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
53 |
46 52
|
syldan |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
54 |
53
|
anassrs |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
55 |
21
|
adantr |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑢 𝑁 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
56 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
57 |
56
|
oveq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ) |
58 |
|
fveq2 |
⊢ ( 𝑦 = 𝑢 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑢 ) ) |
59 |
58
|
oveq2d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) |
60 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ∈ V |
61 |
57 59 1 60
|
ovmpo |
⊢ ( ( 𝑤 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑢 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) |
62 |
61
|
ancoms |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑢 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) |
63 |
62
|
adantlr |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑢 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) |
64 |
18
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
65 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ∈ V |
66 |
57 64 1 65
|
ovmpo |
⊢ ( ( 𝑤 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑣 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
67 |
66
|
ancoms |
⊢ ( ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑣 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
68 |
67
|
adantll |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑣 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
69 |
63 68
|
oveq12d |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
70 |
55 69
|
breq12d |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ↔ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
71 |
70
|
adantll |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ↔ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
72 |
54 71
|
mpbird |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) |
73 |
72
|
ralrimiva |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) |
74 |
40 73
|
jca |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) |
75 |
74
|
3adantl1 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) |
76 |
75
|
ex |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) ) |
77 |
76
|
ralrimivv |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) |
78 |
|
ismet |
⊢ ( 𝑌 ∈ 𝐴 → ( 𝑁 ∈ ( Met ‘ 𝑌 ) ↔ ( 𝑁 : ( 𝑌 × 𝑌 ) ⟶ ℝ ∧ ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) ) ) |
79 |
78
|
3ad2ant1 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ( 𝑁 ∈ ( Met ‘ 𝑌 ) ↔ ( 𝑁 : ( 𝑌 × 𝑌 ) ⟶ ℝ ∧ ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) ) ) |
80 |
15 77 79
|
mpbir2and |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → 𝑁 ∈ ( Met ‘ 𝑌 ) ) |