| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metf1o.2 |
⊢ 𝑁 = ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑌 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ) |
| 2 |
|
f1of |
⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 → 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 3 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
| 4 |
3
|
ex |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑥 ∈ 𝑌 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) ) |
| 5 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) |
| 6 |
5
|
ex |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑦 ∈ 𝑌 → ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) ) |
| 7 |
4 6
|
anim12d |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) ) ) |
| 8 |
2 7
|
syl |
⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) ) ) |
| 9 |
|
metcl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 10 |
9
|
3expib |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) ) |
| 11 |
8 10
|
sylan9r |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) ) |
| 12 |
11
|
3adant1 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) ) |
| 13 |
12
|
ralrimivv |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 14 |
1
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ↔ 𝑁 : ( 𝑌 × 𝑌 ) ⟶ ℝ ) |
| 15 |
13 14
|
sylib |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → 𝑁 : ( 𝑌 × 𝑌 ) ⟶ ℝ ) |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 17 |
16
|
oveq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑣 ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
| 20 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ∈ V |
| 21 |
17 19 1 20
|
ovmpo |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( 𝑢 𝑁 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
| 22 |
21
|
eqeq1d |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ) ) |
| 24 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑢 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) |
| 25 |
24
|
ex |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑢 ∈ 𝑌 → ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) |
| 26 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑣 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) |
| 27 |
26
|
ex |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑣 ∈ 𝑌 → ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) |
| 28 |
25 27
|
anim12d |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) ) |
| 29 |
2 28
|
syl |
⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) ) |
| 30 |
29
|
imp |
⊢ ( ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) |
| 31 |
30
|
adantll |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) |
| 32 |
|
meteq0 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ↔ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
| 33 |
32
|
3expb |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ↔ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
| 34 |
33
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ↔ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
| 35 |
31 34
|
syldan |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) = 0 ↔ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
| 36 |
|
f1of1 |
⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 → 𝐹 : 𝑌 –1-1→ 𝑋 ) |
| 37 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑌 –1-1→ 𝑋 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ 𝑢 = 𝑣 ) ) |
| 38 |
36 37
|
sylan |
⊢ ( ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ 𝑢 = 𝑣 ) ) |
| 39 |
38
|
adantll |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ 𝑢 = 𝑣 ) ) |
| 40 |
23 35 39
|
3bitrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ) |
| 41 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑤 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) |
| 42 |
41
|
ex |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑤 ∈ 𝑌 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) |
| 43 |
28 42
|
anim12d |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) ) |
| 44 |
2 43
|
syl |
⊢ ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) ) |
| 45 |
44
|
imp |
⊢ ( ( 𝐹 : 𝑌 –1-1-onto→ 𝑋 ∧ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) |
| 46 |
45
|
adantll |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) |
| 47 |
|
mettri2 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 48 |
47
|
expcom |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) → ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
| 49 |
48
|
3expb |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ) → ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
| 50 |
49
|
ancoms |
⊢ ( ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) → ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
| 51 |
50
|
impcom |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 52 |
51
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( ( ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑣 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 53 |
46 52
|
syldan |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 54 |
53
|
anassrs |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 55 |
21
|
adantr |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑢 𝑁 𝑣 ) = ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 57 |
56
|
oveq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑦 = 𝑢 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) |
| 60 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ∈ V |
| 61 |
57 59 1 60
|
ovmpo |
⊢ ( ( 𝑤 ∈ 𝑌 ∧ 𝑢 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑢 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) |
| 62 |
61
|
ancoms |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑢 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) |
| 63 |
62
|
adantlr |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑢 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) ) |
| 64 |
18
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
| 65 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ∈ V |
| 66 |
57 64 1 65
|
ovmpo |
⊢ ( ( 𝑤 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑣 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
| 67 |
66
|
ancoms |
⊢ ( ( 𝑣 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑣 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
| 68 |
67
|
adantll |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 𝑁 𝑣 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) |
| 69 |
63 68
|
oveq12d |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 70 |
55 69
|
breq12d |
⊢ ( ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ↔ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
| 71 |
70
|
adantll |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ↔ ( ( 𝐹 ‘ 𝑢 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ≤ ( ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑢 ) ) + ( ( 𝐹 ‘ 𝑤 ) 𝑀 ( 𝐹 ‘ 𝑣 ) ) ) ) ) |
| 72 |
54 71
|
mpbird |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) |
| 73 |
72
|
ralrimiva |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) |
| 74 |
40 73
|
jca |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) |
| 75 |
74
|
3adantl1 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ∧ ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) |
| 76 |
75
|
ex |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) ) |
| 77 |
76
|
ralrimivv |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) |
| 78 |
|
ismet |
⊢ ( 𝑌 ∈ 𝐴 → ( 𝑁 ∈ ( Met ‘ 𝑌 ) ↔ ( 𝑁 : ( 𝑌 × 𝑌 ) ⟶ ℝ ∧ ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) ) ) |
| 79 |
78
|
3ad2ant1 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → ( 𝑁 ∈ ( Met ‘ 𝑌 ) ↔ ( 𝑁 : ( 𝑌 × 𝑌 ) ⟶ ℝ ∧ ∀ 𝑢 ∈ 𝑌 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑢 𝑁 𝑣 ) = 0 ↔ 𝑢 = 𝑣 ) ∧ ∀ 𝑤 ∈ 𝑌 ( 𝑢 𝑁 𝑣 ) ≤ ( ( 𝑤 𝑁 𝑢 ) + ( 𝑤 𝑁 𝑣 ) ) ) ) ) ) |
| 80 |
15 77 79
|
mpbir2and |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) → 𝑁 ∈ ( Met ‘ 𝑌 ) ) |