Step |
Hyp |
Ref |
Expression |
1 |
|
noinfbnd1.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
|
simp2l |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → 𝐵 ⊆ No ) |
3 |
|
simp3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → 𝑈 ∈ 𝐵 ) |
4 |
2 3
|
sseldd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → 𝑈 ∈ No ) |
5 |
|
nofv |
⊢ ( 𝑈 ∈ No → ( ( 𝑈 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑇 ) = 1o ∨ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ) |
6 |
4 5
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → ( ( 𝑈 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑇 ) = 1o ∨ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ) |
7 |
|
3oran |
⊢ ( ( ( 𝑈 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑇 ) = 1o ∨ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ↔ ¬ ( ¬ ( 𝑈 ‘ dom 𝑇 ) = ∅ ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ) |
8 |
6 7
|
sylib |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → ¬ ( ¬ ( 𝑈 ‘ dom 𝑇 ) = ∅ ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ) |
9 |
|
simpl1 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
10 |
|
simpl2 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ) |
11 |
|
simpl3 |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → 𝑈 ∈ 𝐵 ) |
12 |
|
simpr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) |
13 |
12
|
eqcomd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) |
14 |
1
|
noinfbnd1lem4 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ ∅ ) |
15 |
9 10 11 13 14
|
syl112anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ ∅ ) |
16 |
15
|
neneqd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ¬ ( 𝑈 ‘ dom 𝑇 ) = ∅ ) |
17 |
1
|
noinfbnd1lem3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 1o ) |
18 |
9 10 11 13 17
|
syl112anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 1o ) |
19 |
18
|
neneqd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o ) |
20 |
1
|
noinfbnd1lem5 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) |
21 |
9 10 11 13 20
|
syl112anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) |
22 |
21
|
neneqd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ¬ ( 𝑈 ‘ dom 𝑇 ) = 2o ) |
23 |
16 19 22
|
3jca |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( ¬ ( 𝑈 ‘ dom 𝑇 ) = ∅ ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ) |
24 |
8 23
|
mtand |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → ¬ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) |
25 |
1
|
noinfbnd1lem1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → ¬ ( 𝑈 ↾ dom 𝑇 ) <s 𝑇 ) |
26 |
1
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) → 𝑇 ∈ No ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → 𝑇 ∈ No ) |
28 |
|
nodmon |
⊢ ( 𝑇 ∈ No → dom 𝑇 ∈ On ) |
29 |
27 28
|
syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → dom 𝑇 ∈ On ) |
30 |
|
noreson |
⊢ ( ( 𝑈 ∈ No ∧ dom 𝑇 ∈ On ) → ( 𝑈 ↾ dom 𝑇 ) ∈ No ) |
31 |
4 29 30
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → ( 𝑈 ↾ dom 𝑇 ) ∈ No ) |
32 |
|
sltso |
⊢ <s Or No |
33 |
|
solin |
⊢ ( ( <s Or No ∧ ( 𝑇 ∈ No ∧ ( 𝑈 ↾ dom 𝑇 ) ∈ No ) ) → ( 𝑇 <s ( 𝑈 ↾ dom 𝑇 ) ∨ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ∨ ( 𝑈 ↾ dom 𝑇 ) <s 𝑇 ) ) |
34 |
32 33
|
mpan |
⊢ ( ( 𝑇 ∈ No ∧ ( 𝑈 ↾ dom 𝑇 ) ∈ No ) → ( 𝑇 <s ( 𝑈 ↾ dom 𝑇 ) ∨ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ∨ ( 𝑈 ↾ dom 𝑇 ) <s 𝑇 ) ) |
35 |
27 31 34
|
syl2anc |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → ( 𝑇 <s ( 𝑈 ↾ dom 𝑇 ) ∨ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ∨ ( 𝑈 ↾ dom 𝑇 ) <s 𝑇 ) ) |
36 |
24 25 35
|
ecase23d |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑈 ∈ 𝐵 ) → 𝑇 <s ( 𝑈 ↾ dom 𝑇 ) ) |