Metamath Proof Explorer


Theorem noinfbnd1lem6

Description: Lemma for noinfbnd1 . Establish a hard lower bound when there is no minimum. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis noinfbnd1.1 𝑇 = if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
Assertion noinfbnd1lem6 ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → 𝑇 <s ( 𝑈 ↾ dom 𝑇 ) )

Proof

Step Hyp Ref Expression
1 noinfbnd1.1 𝑇 = if ( ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 , ( ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { ⟨ dom ( 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ) , 1o ⟩ } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥𝑢𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢𝑔 ) = 𝑥 ) ) ) )
2 simp2l ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → 𝐵 No )
3 simp3 ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → 𝑈𝐵 )
4 2 3 sseldd ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → 𝑈 No )
5 nofv ( 𝑈 No → ( ( 𝑈 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑇 ) = 1o ∨ ( 𝑈 ‘ dom 𝑇 ) = 2o ) )
6 4 5 syl ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → ( ( 𝑈 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑇 ) = 1o ∨ ( 𝑈 ‘ dom 𝑇 ) = 2o ) )
7 3oran ( ( ( 𝑈 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑈 ‘ dom 𝑇 ) = 1o ∨ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ↔ ¬ ( ¬ ( 𝑈 ‘ dom 𝑇 ) = ∅ ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 2o ) )
8 6 7 sylib ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → ¬ ( ¬ ( 𝑈 ‘ dom 𝑇 ) = ∅ ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 2o ) )
9 simpl1 ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 )
10 simpl2 ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( 𝐵 No 𝐵𝑉 ) )
11 simpl3 ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → 𝑈𝐵 )
12 simpr ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → 𝑇 = ( 𝑈 ↾ dom 𝑇 ) )
13 12 eqcomd ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( 𝑈 ↾ dom 𝑇 ) = 𝑇 )
14 1 noinfbnd1lem4 ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ ( 𝑈𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ ∅ )
15 9 10 11 13 14 syl112anc ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ ∅ )
16 15 neneqd ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ¬ ( 𝑈 ‘ dom 𝑇 ) = ∅ )
17 1 noinfbnd1lem3 ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ ( 𝑈𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 1o )
18 9 10 11 13 17 syl112anc ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 1o )
19 18 neneqd ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o )
20 1 noinfbnd1lem5 ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ ( 𝑈𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o )
21 9 10 11 13 20 syl112anc ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o )
22 21 neneqd ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ¬ ( 𝑈 ‘ dom 𝑇 ) = 2o )
23 16 19 22 3jca ( ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) ∧ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ) → ( ¬ ( 𝑈 ‘ dom 𝑇 ) = ∅ ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o ∧ ¬ ( 𝑈 ‘ dom 𝑇 ) = 2o ) )
24 8 23 mtand ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → ¬ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) )
25 1 noinfbnd1lem1 ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → ¬ ( 𝑈 ↾ dom 𝑇 ) <s 𝑇 )
26 1 noinfno ( ( 𝐵 No 𝐵𝑉 ) → 𝑇 No )
27 26 3ad2ant2 ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → 𝑇 No )
28 nodmon ( 𝑇 No → dom 𝑇 ∈ On )
29 27 28 syl ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → dom 𝑇 ∈ On )
30 noreson ( ( 𝑈 No ∧ dom 𝑇 ∈ On ) → ( 𝑈 ↾ dom 𝑇 ) ∈ No )
31 4 29 30 syl2anc ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → ( 𝑈 ↾ dom 𝑇 ) ∈ No )
32 sltso <s Or No
33 solin ( ( <s Or No ∧ ( 𝑇 No ∧ ( 𝑈 ↾ dom 𝑇 ) ∈ No ) ) → ( 𝑇 <s ( 𝑈 ↾ dom 𝑇 ) ∨ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ∨ ( 𝑈 ↾ dom 𝑇 ) <s 𝑇 ) )
34 32 33 mpan ( ( 𝑇 No ∧ ( 𝑈 ↾ dom 𝑇 ) ∈ No ) → ( 𝑇 <s ( 𝑈 ↾ dom 𝑇 ) ∨ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ∨ ( 𝑈 ↾ dom 𝑇 ) <s 𝑇 ) )
35 27 31 34 syl2anc ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → ( 𝑇 <s ( 𝑈 ↾ dom 𝑇 ) ∨ 𝑇 = ( 𝑈 ↾ dom 𝑇 ) ∨ ( 𝑈 ↾ dom 𝑇 ) <s 𝑇 ) )
36 24 25 35 ecase23d ( ( ¬ ∃ 𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 No 𝐵𝑉 ) ∧ 𝑈𝐵 ) → 𝑇 <s ( 𝑈 ↾ dom 𝑇 ) )