Step |
Hyp |
Ref |
Expression |
1 |
|
noinfbnd1.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
1
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) → 𝑇 ∈ No ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → 𝑇 ∈ No ) |
4 |
|
nodmord |
⊢ ( 𝑇 ∈ No → Ord dom 𝑇 ) |
5 |
|
ordirr |
⊢ ( Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇 ) |
6 |
3 4 5
|
3syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ¬ dom 𝑇 ∈ dom 𝑇 ) |
7 |
|
simpl3l |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → 𝑈 ∈ 𝐵 ) |
8 |
|
ndmfv |
⊢ ( ¬ dom 𝑇 ∈ dom 𝑈 → ( 𝑈 ‘ dom 𝑇 ) = ∅ ) |
9 |
|
1n0 |
⊢ 1o ≠ ∅ |
10 |
9
|
necomi |
⊢ ∅ ≠ 1o |
11 |
|
neeq1 |
⊢ ( ( 𝑈 ‘ dom 𝑇 ) = ∅ → ( ( 𝑈 ‘ dom 𝑇 ) ≠ 1o ↔ ∅ ≠ 1o ) ) |
12 |
10 11
|
mpbiri |
⊢ ( ( 𝑈 ‘ dom 𝑇 ) = ∅ → ( 𝑈 ‘ dom 𝑇 ) ≠ 1o ) |
13 |
12
|
neneqd |
⊢ ( ( 𝑈 ‘ dom 𝑇 ) = ∅ → ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o ) |
14 |
8 13
|
syl |
⊢ ( ¬ dom 𝑇 ∈ dom 𝑈 → ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o ) |
15 |
14
|
con4i |
⊢ ( ( 𝑈 ‘ dom 𝑇 ) = 1o → dom 𝑇 ∈ dom 𝑈 ) |
16 |
15
|
adantl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → dom 𝑇 ∈ dom 𝑈 ) |
17 |
|
simpl2l |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → 𝐵 ⊆ No ) |
18 |
17 7
|
sseldd |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → 𝑈 ∈ No ) |
19 |
18
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → 𝑈 ∈ No ) |
20 |
17
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → 𝐵 ⊆ No ) |
21 |
|
simprl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → 𝑞 ∈ 𝐵 ) |
22 |
20 21
|
sseldd |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → 𝑞 ∈ No ) |
23 |
3
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → 𝑇 ∈ No ) |
24 |
|
nodmon |
⊢ ( 𝑇 ∈ No → dom 𝑇 ∈ On ) |
25 |
23 24
|
syl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → dom 𝑇 ∈ On ) |
26 |
25
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → dom 𝑇 ∈ On ) |
27 |
|
simpl3r |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) |
28 |
27
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) |
29 |
|
simpll1 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
30 |
|
simpll2 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ) |
31 |
|
simpll3 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) |
32 |
|
simpr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) |
33 |
1
|
noinfbnd1lem2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) ) → ( 𝑞 ↾ dom 𝑇 ) = 𝑇 ) |
34 |
29 30 31 32 33
|
syl112anc |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → ( 𝑞 ↾ dom 𝑇 ) = 𝑇 ) |
35 |
28 34
|
eqtr4d |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → ( 𝑈 ↾ dom 𝑇 ) = ( 𝑞 ↾ dom 𝑇 ) ) |
36 |
|
simplr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → ( 𝑈 ‘ dom 𝑇 ) = 1o ) |
37 |
|
simprr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → ¬ 𝑈 <s 𝑞 ) |
38 |
|
nogesgn1ores |
⊢ ( ( ( 𝑈 ∈ No ∧ 𝑞 ∈ No ∧ dom 𝑇 ∈ On ) ∧ ( ( 𝑈 ↾ dom 𝑇 ) = ( 𝑞 ↾ dom 𝑇 ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ¬ 𝑈 <s 𝑞 ) → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) |
39 |
19 22 26 35 36 37 38
|
syl321anc |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ ( 𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞 ) ) → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) |
40 |
39
|
expr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) ∧ 𝑞 ∈ 𝐵 ) → ( ¬ 𝑈 <s 𝑞 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) |
41 |
40
|
ralrimiva |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑈 <s 𝑞 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) |
42 |
|
dmeq |
⊢ ( 𝑝 = 𝑈 → dom 𝑝 = dom 𝑈 ) |
43 |
42
|
eleq2d |
⊢ ( 𝑝 = 𝑈 → ( dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈 ) ) |
44 |
|
breq1 |
⊢ ( 𝑝 = 𝑈 → ( 𝑝 <s 𝑞 ↔ 𝑈 <s 𝑞 ) ) |
45 |
44
|
notbid |
⊢ ( 𝑝 = 𝑈 → ( ¬ 𝑝 <s 𝑞 ↔ ¬ 𝑈 <s 𝑞 ) ) |
46 |
|
reseq1 |
⊢ ( 𝑝 = 𝑈 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑈 ↾ suc dom 𝑇 ) ) |
47 |
46
|
eqeq1d |
⊢ ( 𝑝 = 𝑈 → ( ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ↔ ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) |
48 |
45 47
|
imbi12d |
⊢ ( 𝑝 = 𝑈 → ( ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ↔ ( ¬ 𝑈 <s 𝑞 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) |
49 |
48
|
ralbidv |
⊢ ( 𝑝 = 𝑈 → ( ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ↔ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑈 <s 𝑞 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) |
50 |
43 49
|
anbi12d |
⊢ ( 𝑝 = 𝑈 → ( ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ↔ ( dom 𝑇 ∈ dom 𝑈 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑈 <s 𝑞 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) ) |
51 |
50
|
rspcev |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ ( dom 𝑇 ∈ dom 𝑈 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑈 <s 𝑞 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) → ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) |
52 |
7 16 41 51
|
syl12anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) |
53 |
1
|
noinfdm |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = { 𝑧 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ) |
54 |
53
|
eleq2d |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → ( dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ { 𝑧 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ) ) |
55 |
54
|
3ad2ant1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ { 𝑧 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ) ) |
56 |
|
eleq1 |
⊢ ( 𝑧 = dom 𝑇 → ( 𝑧 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝 ) ) |
57 |
|
suceq |
⊢ ( 𝑧 = dom 𝑇 → suc 𝑧 = suc dom 𝑇 ) |
58 |
57
|
reseq2d |
⊢ ( 𝑧 = dom 𝑇 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑝 ↾ suc dom 𝑇 ) ) |
59 |
57
|
reseq2d |
⊢ ( 𝑧 = dom 𝑇 → ( 𝑞 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) |
60 |
58 59
|
eqeq12d |
⊢ ( 𝑧 = dom 𝑇 → ( ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ↔ ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) |
61 |
60
|
imbi2d |
⊢ ( 𝑧 = dom 𝑇 → ( ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ↔ ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) |
62 |
61
|
ralbidv |
⊢ ( 𝑧 = dom 𝑇 → ( ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ↔ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) |
63 |
56 62
|
anbi12d |
⊢ ( 𝑧 = dom 𝑇 → ( ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) ↔ ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) ) |
64 |
63
|
rexbidv |
⊢ ( 𝑧 = dom 𝑇 → ( ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) ↔ ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) ) |
65 |
64
|
elabg |
⊢ ( dom 𝑇 ∈ On → ( dom 𝑇 ∈ { 𝑧 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ↔ ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) ) |
66 |
3 24 65
|
3syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( dom 𝑇 ∈ { 𝑧 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ↔ ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) ) |
67 |
55 66
|
bitrd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( dom 𝑇 ∈ dom 𝑇 ↔ ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → ( dom 𝑇 ∈ dom 𝑇 ↔ ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐵 ( ¬ 𝑝 <s 𝑞 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑞 ↾ suc dom 𝑇 ) ) ) ) ) |
69 |
52 68
|
mpbird |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 1o ) → dom 𝑇 ∈ dom 𝑇 ) |
70 |
6 69
|
mtand |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ¬ ( 𝑈 ‘ dom 𝑇 ) = 1o ) |
71 |
70
|
neqned |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 1o ) |