Step |
Hyp |
Ref |
Expression |
1 |
|
noinfbnd1.1 |
⊢ 𝑇 = if ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 , ( ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) , 1o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐵 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐵 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐵 ( ¬ 𝑢 <s 𝑣 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
2 |
1
|
noinfno |
⊢ ( ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) → 𝑇 ∈ No ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → 𝑇 ∈ No ) |
4 |
3
|
adantl |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → 𝑇 ∈ No ) |
5 |
|
nodmord |
⊢ ( 𝑇 ∈ No → Ord dom 𝑇 ) |
6 |
4 5
|
syl |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → Ord dom 𝑇 ) |
7 |
|
ordirr |
⊢ ( Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇 ) |
8 |
6 7
|
syl |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ¬ dom 𝑇 ∈ dom 𝑇 ) |
9 |
|
simpr3l |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → 𝑈 ∈ 𝐵 ) |
10 |
9
|
adantr |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → 𝑈 ∈ 𝐵 ) |
11 |
|
ndmfv |
⊢ ( ¬ dom 𝑇 ∈ dom 𝑈 → ( 𝑈 ‘ dom 𝑇 ) = ∅ ) |
12 |
|
2on0 |
⊢ 2o ≠ ∅ |
13 |
12
|
necomi |
⊢ ∅ ≠ 2o |
14 |
|
neeq1 |
⊢ ( ( 𝑈 ‘ dom 𝑇 ) = ∅ → ( ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ↔ ∅ ≠ 2o ) ) |
15 |
13 14
|
mpbiri |
⊢ ( ( 𝑈 ‘ dom 𝑇 ) = ∅ → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) |
16 |
11 15
|
syl |
⊢ ( ¬ dom 𝑇 ∈ dom 𝑈 → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) |
17 |
16
|
neneqd |
⊢ ( ¬ dom 𝑇 ∈ dom 𝑈 → ¬ ( 𝑈 ‘ dom 𝑇 ) = 2o ) |
18 |
17
|
con4i |
⊢ ( ( 𝑈 ‘ dom 𝑇 ) = 2o → dom 𝑇 ∈ dom 𝑈 ) |
19 |
18
|
adantl |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → dom 𝑇 ∈ dom 𝑈 ) |
20 |
|
simpl2l |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → 𝐵 ⊆ No ) |
21 |
20
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → 𝐵 ⊆ No ) |
22 |
|
simpl3l |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → 𝑈 ∈ 𝐵 ) |
23 |
22
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → 𝑈 ∈ 𝐵 ) |
24 |
21 23
|
sseldd |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → 𝑈 ∈ No ) |
25 |
|
nofun |
⊢ ( 𝑈 ∈ No → Fun 𝑈 ) |
26 |
24 25
|
syl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → Fun 𝑈 ) |
27 |
|
simprll |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → 𝑧 ∈ 𝐵 ) |
28 |
21 27
|
sseldd |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → 𝑧 ∈ No ) |
29 |
|
nofun |
⊢ ( 𝑧 ∈ No → Fun 𝑧 ) |
30 |
28 29
|
syl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → Fun 𝑧 ) |
31 |
|
simpl3r |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) |
32 |
31
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) |
33 |
|
simpll1 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
34 |
|
simpll2 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ) |
35 |
|
simpll3 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) |
36 |
|
simprl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ) |
37 |
1
|
noinfbnd1lem2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ∧ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ) ) → ( 𝑧 ↾ dom 𝑇 ) = 𝑇 ) |
38 |
33 34 35 36 37
|
syl112anc |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( 𝑧 ↾ dom 𝑇 ) = 𝑇 ) |
39 |
32 38
|
eqtr4d |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( 𝑈 ↾ dom 𝑇 ) = ( 𝑧 ↾ dom 𝑇 ) ) |
40 |
|
simplr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( 𝑈 ‘ dom 𝑇 ) = 2o ) |
41 |
40 18
|
syl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → dom 𝑇 ∈ dom 𝑈 ) |
42 |
|
simprr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( 𝑧 ‘ dom 𝑇 ) = 2o ) |
43 |
|
ndmfv |
⊢ ( ¬ dom 𝑇 ∈ dom 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = ∅ ) |
44 |
|
neeq1 |
⊢ ( ( 𝑧 ‘ dom 𝑇 ) = ∅ → ( ( 𝑧 ‘ dom 𝑇 ) ≠ 2o ↔ ∅ ≠ 2o ) ) |
45 |
13 44
|
mpbiri |
⊢ ( ( 𝑧 ‘ dom 𝑇 ) = ∅ → ( 𝑧 ‘ dom 𝑇 ) ≠ 2o ) |
46 |
43 45
|
syl |
⊢ ( ¬ dom 𝑇 ∈ dom 𝑧 → ( 𝑧 ‘ dom 𝑇 ) ≠ 2o ) |
47 |
46
|
neneqd |
⊢ ( ¬ dom 𝑇 ∈ dom 𝑧 → ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) |
48 |
47
|
con4i |
⊢ ( ( 𝑧 ‘ dom 𝑇 ) = 2o → dom 𝑇 ∈ dom 𝑧 ) |
49 |
42 48
|
syl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → dom 𝑇 ∈ dom 𝑧 ) |
50 |
40 42
|
eqtr4d |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( 𝑈 ‘ dom 𝑇 ) = ( 𝑧 ‘ dom 𝑇 ) ) |
51 |
|
eqfunressuc |
⊢ ( ( ( Fun 𝑈 ∧ Fun 𝑧 ) ∧ ( 𝑈 ↾ dom 𝑇 ) = ( 𝑧 ↾ dom 𝑇 ) ∧ ( dom 𝑇 ∈ dom 𝑈 ∧ dom 𝑇 ∈ dom 𝑧 ∧ ( 𝑈 ‘ dom 𝑇 ) = ( 𝑧 ‘ dom 𝑇 ) ) ) → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) |
52 |
26 30 39 41 49 50 51
|
syl213anc |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) |
53 |
52
|
expr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ) → ( ( 𝑧 ‘ dom 𝑇 ) = 2o → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) |
54 |
53
|
expr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ 𝑧 ∈ 𝐵 ) → ( ¬ 𝑈 <s 𝑧 → ( ( 𝑧 ‘ dom 𝑇 ) = 2o → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) |
55 |
54
|
a2d |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) → ( ¬ 𝑈 <s 𝑧 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) |
56 |
55
|
ralimdva |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) → ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) |
57 |
56
|
impcom |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) ) → ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) |
58 |
57
|
anassrs |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) |
59 |
|
dmeq |
⊢ ( 𝑝 = 𝑈 → dom 𝑝 = dom 𝑈 ) |
60 |
59
|
eleq2d |
⊢ ( 𝑝 = 𝑈 → ( dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈 ) ) |
61 |
|
breq1 |
⊢ ( 𝑝 = 𝑈 → ( 𝑝 <s 𝑧 ↔ 𝑈 <s 𝑧 ) ) |
62 |
61
|
notbid |
⊢ ( 𝑝 = 𝑈 → ( ¬ 𝑝 <s 𝑧 ↔ ¬ 𝑈 <s 𝑧 ) ) |
63 |
|
reseq1 |
⊢ ( 𝑝 = 𝑈 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑈 ↾ suc dom 𝑇 ) ) |
64 |
63
|
eqeq1d |
⊢ ( 𝑝 = 𝑈 → ( ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ↔ ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) |
65 |
62 64
|
imbi12d |
⊢ ( 𝑝 = 𝑈 → ( ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ↔ ( ¬ 𝑈 <s 𝑧 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) |
66 |
65
|
ralbidv |
⊢ ( 𝑝 = 𝑈 → ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) |
67 |
60 66
|
anbi12d |
⊢ ( 𝑝 = 𝑈 → ( ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ↔ ( dom 𝑇 ∈ dom 𝑈 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) ) |
68 |
67
|
rspcev |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ ( dom 𝑇 ∈ dom 𝑈 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑈 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) → ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) |
69 |
10 19 58 68
|
syl12anc |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) |
70 |
|
nodmon |
⊢ ( 𝑇 ∈ No → dom 𝑇 ∈ On ) |
71 |
4 70
|
syl |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → dom 𝑇 ∈ On ) |
72 |
71
|
adantr |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → dom 𝑇 ∈ On ) |
73 |
|
eleq1 |
⊢ ( 𝑎 = dom 𝑇 → ( 𝑎 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝 ) ) |
74 |
|
suceq |
⊢ ( 𝑎 = dom 𝑇 → suc 𝑎 = suc dom 𝑇 ) |
75 |
74
|
reseq2d |
⊢ ( 𝑎 = dom 𝑇 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑝 ↾ suc dom 𝑇 ) ) |
76 |
74
|
reseq2d |
⊢ ( 𝑎 = dom 𝑇 → ( 𝑧 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) |
77 |
75 76
|
eqeq12d |
⊢ ( 𝑎 = dom 𝑇 → ( ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ↔ ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) |
78 |
77
|
imbi2d |
⊢ ( 𝑎 = dom 𝑇 → ( ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ↔ ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) |
79 |
78
|
ralbidv |
⊢ ( 𝑎 = dom 𝑇 → ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) |
80 |
73 79
|
anbi12d |
⊢ ( 𝑎 = dom 𝑇 → ( ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) ↔ ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) ) |
81 |
80
|
rexbidv |
⊢ ( 𝑎 = dom 𝑇 → ( ∃ 𝑝 ∈ 𝐵 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) ↔ ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) ) |
82 |
81
|
elabg |
⊢ ( dom 𝑇 ∈ On → ( dom 𝑇 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ↔ ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) ) |
83 |
72 82
|
syl |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → ( dom 𝑇 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ↔ ∃ 𝑝 ∈ 𝐵 ( dom 𝑇 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc dom 𝑇 ) = ( 𝑧 ↾ suc dom 𝑇 ) ) ) ) ) |
84 |
69 83
|
mpbird |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → dom 𝑇 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ) |
85 |
1
|
noinfdm |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = { 𝑎 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ) |
86 |
85
|
3ad2ant1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → dom 𝑇 = { 𝑎 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ) |
87 |
86
|
adantl |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → dom 𝑇 = { 𝑎 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ) |
88 |
87
|
adantr |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → dom 𝑇 = { 𝑎 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ) |
89 |
88
|
eleq2d |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → ( dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐵 ( 𝑎 ∈ dom 𝑝 ∧ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑝 <s 𝑧 → ( 𝑝 ↾ suc 𝑎 ) = ( 𝑧 ↾ suc 𝑎 ) ) ) } ) ) |
90 |
84 89
|
mpbird |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) ∧ ( 𝑈 ‘ dom 𝑇 ) = 2o ) → dom 𝑇 ∈ dom 𝑇 ) |
91 |
8 90
|
mtand |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ¬ ( 𝑈 ‘ dom 𝑇 ) = 2o ) |
92 |
91
|
neqned |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) |
93 |
|
rexanali |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ↔ ¬ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) |
94 |
|
simpr1 |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ) |
95 |
|
simpr2 |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ) |
96 |
|
simplll |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → 𝑧 ∈ 𝐵 ) |
97 |
|
simpr3 |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) |
98 |
|
simpll |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ) |
99 |
94 95 97 98 37
|
syl112anc |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( 𝑧 ↾ dom 𝑇 ) = 𝑇 ) |
100 |
1
|
noinfbnd1lem4 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑧 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑧 ‘ dom 𝑇 ) ≠ ∅ ) |
101 |
94 95 96 99 100
|
syl112anc |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( 𝑧 ‘ dom 𝑇 ) ≠ ∅ ) |
102 |
101
|
neneqd |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ¬ ( 𝑧 ‘ dom 𝑇 ) = ∅ ) |
103 |
102
|
pm2.21d |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( ( 𝑧 ‘ dom 𝑇 ) = ∅ → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) ) |
104 |
1
|
noinfbnd1lem3 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑧 ∈ 𝐵 ∧ ( 𝑧 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑧 ‘ dom 𝑇 ) ≠ 1o ) |
105 |
94 95 96 99 104
|
syl112anc |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( 𝑧 ‘ dom 𝑇 ) ≠ 1o ) |
106 |
105
|
neneqd |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ¬ ( 𝑧 ‘ dom 𝑇 ) = 1o ) |
107 |
106
|
pm2.21d |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( ( 𝑧 ‘ dom 𝑇 ) = 1o → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) ) |
108 |
|
simplr |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) |
109 |
|
simpr2l |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → 𝐵 ⊆ No ) |
110 |
109 96
|
sseldd |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → 𝑧 ∈ No ) |
111 |
|
nofv |
⊢ ( 𝑧 ∈ No → ( ( 𝑧 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑇 ) = 1o ∨ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) |
112 |
110 111
|
syl |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( ( 𝑧 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑇 ) = 1o ∨ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) |
113 |
|
3orel3 |
⊢ ( ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o → ( ( ( 𝑧 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑇 ) = 1o ∨ ( 𝑧 ‘ dom 𝑇 ) = 2o ) → ( ( 𝑧 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑇 ) = 1o ) ) ) |
114 |
108 112 113
|
sylc |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( ( 𝑧 ‘ dom 𝑇 ) = ∅ ∨ ( 𝑧 ‘ dom 𝑇 ) = 1o ) ) |
115 |
103 107 114
|
mpjaod |
⊢ ( ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) |
116 |
115
|
ex |
⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑧 ) ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) → ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) ) |
117 |
116
|
anasss |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑈 <s 𝑧 ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ) → ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) ) |
118 |
117
|
rexlimiva |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) → ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) ) |
119 |
118
|
imp |
⊢ ( ( ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 ∧ ¬ ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) |
120 |
93 119
|
sylanbr |
⊢ ( ( ¬ ∀ 𝑧 ∈ 𝐵 ( ¬ 𝑈 <s 𝑧 → ( 𝑧 ‘ dom 𝑇 ) = 2o ) ∧ ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) |
121 |
92 120
|
pm2.61ian |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑈 ∈ 𝐵 ∧ ( 𝑈 ↾ dom 𝑇 ) = 𝑇 ) ) → ( 𝑈 ‘ dom 𝑇 ) ≠ 2o ) |