| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑐  ∈  𝐴  ∧  𝑥  ∈  (  M  ‘ 𝑐 ) ) )  →  𝑐  ∈  𝐴 ) | 
						
							| 2 |  | limsuc | ⊢ ( Lim  𝐴  →  ( 𝑐  ∈  𝐴  ↔  suc  𝑐  ∈  𝐴 ) ) | 
						
							| 3 | 2 | ad2antrr | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑐  ∈  𝐴  ∧  𝑥  ∈  (  M  ‘ 𝑐 ) ) )  →  ( 𝑐  ∈  𝐴  ↔  suc  𝑐  ∈  𝐴 ) ) | 
						
							| 4 | 1 3 | mpbid | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑐  ∈  𝐴  ∧  𝑥  ∈  (  M  ‘ 𝑐 ) ) )  →  suc  𝑐  ∈  𝐴 ) | 
						
							| 5 |  | simprr | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑐  ∈  𝐴  ∧  𝑥  ∈  (  M  ‘ 𝑐 ) ) )  →  𝑥  ∈  (  M  ‘ 𝑐 ) ) | 
						
							| 6 |  | limord | ⊢ ( Lim  𝐴  →  Ord  𝐴 ) | 
						
							| 7 |  | elex | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  V ) | 
						
							| 8 | 6 7 | anim12i | ⊢ ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  →  ( Ord  𝐴  ∧  𝐴  ∈  V ) ) | 
						
							| 9 |  | elon2 | ⊢ ( 𝐴  ∈  On  ↔  ( Ord  𝐴  ∧  𝐴  ∈  V ) ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  →  𝐴  ∈  On ) | 
						
							| 11 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  𝑐  ∈  𝐴 )  →  𝑐  ∈  On ) | 
						
							| 12 | 10 1 11 | syl2an2r | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑐  ∈  𝐴  ∧  𝑥  ∈  (  M  ‘ 𝑐 ) ) )  →  𝑐  ∈  On ) | 
						
							| 13 |  | madeoldsuc | ⊢ ( 𝑐  ∈  On  →  (  M  ‘ 𝑐 )  =  (  O  ‘ suc  𝑐 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑐  ∈  𝐴  ∧  𝑥  ∈  (  M  ‘ 𝑐 ) ) )  →  (  M  ‘ 𝑐 )  =  (  O  ‘ suc  𝑐 ) ) | 
						
							| 15 | 5 14 | eleqtrd | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑐  ∈  𝐴  ∧  𝑥  ∈  (  M  ‘ 𝑐 ) ) )  →  𝑥  ∈  (  O  ‘ suc  𝑐 ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑏  =  suc  𝑐  →  (  O  ‘ 𝑏 )  =  (  O  ‘ suc  𝑐 ) ) | 
						
							| 17 | 16 | eleq2d | ⊢ ( 𝑏  =  suc  𝑐  →  ( 𝑥  ∈  (  O  ‘ 𝑏 )  ↔  𝑥  ∈  (  O  ‘ suc  𝑐 ) ) ) | 
						
							| 18 | 17 | rspcev | ⊢ ( ( suc  𝑐  ∈  𝐴  ∧  𝑥  ∈  (  O  ‘ suc  𝑐 ) )  →  ∃ 𝑏  ∈  𝐴 𝑥  ∈  (  O  ‘ 𝑏 ) ) | 
						
							| 19 | 4 15 18 | syl2anc | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑐  ∈  𝐴  ∧  𝑥  ∈  (  M  ‘ 𝑐 ) ) )  →  ∃ 𝑏  ∈  𝐴 𝑥  ∈  (  O  ‘ 𝑏 ) ) | 
						
							| 20 | 19 | rexlimdvaa | ⊢ ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  →  ( ∃ 𝑐  ∈  𝐴 𝑥  ∈  (  M  ‘ 𝑐 )  →  ∃ 𝑏  ∈  𝐴 𝑥  ∈  (  O  ‘ 𝑏 ) ) ) | 
						
							| 21 |  | simprl | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑥  ∈  (  O  ‘ 𝑏 ) ) )  →  𝑏  ∈  𝐴 ) | 
						
							| 22 |  | oldssmade | ⊢ (  O  ‘ 𝑏 )  ⊆  (  M  ‘ 𝑏 ) | 
						
							| 23 |  | simprr | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑥  ∈  (  O  ‘ 𝑏 ) ) )  →  𝑥  ∈  (  O  ‘ 𝑏 ) ) | 
						
							| 24 | 22 23 | sselid | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑥  ∈  (  O  ‘ 𝑏 ) ) )  →  𝑥  ∈  (  M  ‘ 𝑏 ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑐  =  𝑏  →  (  M  ‘ 𝑐 )  =  (  M  ‘ 𝑏 ) ) | 
						
							| 26 | 25 | eleq2d | ⊢ ( 𝑐  =  𝑏  →  ( 𝑥  ∈  (  M  ‘ 𝑐 )  ↔  𝑥  ∈  (  M  ‘ 𝑏 ) ) ) | 
						
							| 27 | 26 | rspcev | ⊢ ( ( 𝑏  ∈  𝐴  ∧  𝑥  ∈  (  M  ‘ 𝑏 ) )  →  ∃ 𝑐  ∈  𝐴 𝑥  ∈  (  M  ‘ 𝑐 ) ) | 
						
							| 28 | 21 24 27 | syl2anc | ⊢ ( ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝐴  ∧  𝑥  ∈  (  O  ‘ 𝑏 ) ) )  →  ∃ 𝑐  ∈  𝐴 𝑥  ∈  (  M  ‘ 𝑐 ) ) | 
						
							| 29 | 28 | rexlimdvaa | ⊢ ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  →  ( ∃ 𝑏  ∈  𝐴 𝑥  ∈  (  O  ‘ 𝑏 )  →  ∃ 𝑐  ∈  𝐴 𝑥  ∈  (  M  ‘ 𝑐 ) ) ) | 
						
							| 30 | 20 29 | impbid | ⊢ ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  →  ( ∃ 𝑐  ∈  𝐴 𝑥  ∈  (  M  ‘ 𝑐 )  ↔  ∃ 𝑏  ∈  𝐴 𝑥  ∈  (  O  ‘ 𝑏 ) ) ) | 
						
							| 31 |  | elold | ⊢ ( 𝐴  ∈  On  →  ( 𝑥  ∈  (  O  ‘ 𝐴 )  ↔  ∃ 𝑐  ∈  𝐴 𝑥  ∈  (  M  ‘ 𝑐 ) ) ) | 
						
							| 32 | 10 31 | syl | ⊢ ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  →  ( 𝑥  ∈  (  O  ‘ 𝐴 )  ↔  ∃ 𝑐  ∈  𝐴 𝑥  ∈  (  M  ‘ 𝑐 ) ) ) | 
						
							| 33 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑏  ∈  𝐴 (  O  ‘ 𝑏 )  ↔  ∃ 𝑏  ∈  𝐴 𝑥  ∈  (  O  ‘ 𝑏 ) ) | 
						
							| 34 | 33 | a1i | ⊢ ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  →  ( 𝑥  ∈  ∪  𝑏  ∈  𝐴 (  O  ‘ 𝑏 )  ↔  ∃ 𝑏  ∈  𝐴 𝑥  ∈  (  O  ‘ 𝑏 ) ) ) | 
						
							| 35 | 30 32 34 | 3bitr4d | ⊢ ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  →  ( 𝑥  ∈  (  O  ‘ 𝐴 )  ↔  𝑥  ∈  ∪  𝑏  ∈  𝐴 (  O  ‘ 𝑏 ) ) ) | 
						
							| 36 | 35 | eqrdv | ⊢ ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  →  (  O  ‘ 𝐴 )  =  ∪  𝑏  ∈  𝐴 (  O  ‘ 𝑏 ) ) | 
						
							| 37 |  | oldf | ⊢  O  : On ⟶ 𝒫   No | 
						
							| 38 |  | ffun | ⊢ (  O  : On ⟶ 𝒫   No   →  Fun   O  ) | 
						
							| 39 |  | funiunfv | ⊢ ( Fun   O   →  ∪  𝑏  ∈  𝐴 (  O  ‘ 𝑏 )  =  ∪  (  O   “  𝐴 ) ) | 
						
							| 40 | 37 38 39 | mp2b | ⊢ ∪  𝑏  ∈  𝐴 (  O  ‘ 𝑏 )  =  ∪  (  O   “  𝐴 ) | 
						
							| 41 | 36 40 | eqtrdi | ⊢ ( ( Lim  𝐴  ∧  𝐴  ∈  𝑉 )  →  (  O  ‘ 𝐴 )  =  ∪  (  O   “  𝐴 ) ) |