Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘ 𝑐 ) ) ) → 𝑐 ∈ 𝐴 ) |
2 |
|
limsuc |
⊢ ( Lim 𝐴 → ( 𝑐 ∈ 𝐴 ↔ suc 𝑐 ∈ 𝐴 ) ) |
3 |
2
|
ad2antrr |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘ 𝑐 ) ) ) → ( 𝑐 ∈ 𝐴 ↔ suc 𝑐 ∈ 𝐴 ) ) |
4 |
1 3
|
mpbid |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘ 𝑐 ) ) ) → suc 𝑐 ∈ 𝐴 ) |
5 |
|
simprr |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘ 𝑐 ) ) ) → 𝑥 ∈ ( M ‘ 𝑐 ) ) |
6 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
7 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
8 |
6 7
|
anim12i |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( Ord 𝐴 ∧ 𝐴 ∈ V ) ) |
9 |
|
elon2 |
⊢ ( 𝐴 ∈ On ↔ ( Ord 𝐴 ∧ 𝐴 ∈ V ) ) |
10 |
8 9
|
sylibr |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ On ) |
11 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ On ) |
12 |
10 1 11
|
syl2an2r |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘ 𝑐 ) ) ) → 𝑐 ∈ On ) |
13 |
|
madeoldsuc |
⊢ ( 𝑐 ∈ On → ( M ‘ 𝑐 ) = ( O ‘ suc 𝑐 ) ) |
14 |
12 13
|
syl |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘ 𝑐 ) ) ) → ( M ‘ 𝑐 ) = ( O ‘ suc 𝑐 ) ) |
15 |
5 14
|
eleqtrd |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘ 𝑐 ) ) ) → 𝑥 ∈ ( O ‘ suc 𝑐 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑏 = suc 𝑐 → ( O ‘ 𝑏 ) = ( O ‘ suc 𝑐 ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝑏 = suc 𝑐 → ( 𝑥 ∈ ( O ‘ 𝑏 ) ↔ 𝑥 ∈ ( O ‘ suc 𝑐 ) ) ) |
18 |
17
|
rspcev |
⊢ ( ( suc 𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘ suc 𝑐 ) ) → ∃ 𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘ 𝑏 ) ) |
19 |
4 15 18
|
syl2anc |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘ 𝑐 ) ) ) → ∃ 𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘ 𝑏 ) ) |
20 |
19
|
rexlimdvaa |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( ∃ 𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘ 𝑐 ) → ∃ 𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘ 𝑏 ) ) ) |
21 |
|
simprl |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘ 𝑏 ) ) ) → 𝑏 ∈ 𝐴 ) |
22 |
|
oldssmade |
⊢ ( O ‘ 𝑏 ) ⊆ ( M ‘ 𝑏 ) |
23 |
|
simprr |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘ 𝑏 ) ) ) → 𝑥 ∈ ( O ‘ 𝑏 ) ) |
24 |
22 23
|
sselid |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘ 𝑏 ) ) ) → 𝑥 ∈ ( M ‘ 𝑏 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑐 = 𝑏 → ( M ‘ 𝑐 ) = ( M ‘ 𝑏 ) ) |
26 |
25
|
eleq2d |
⊢ ( 𝑐 = 𝑏 → ( 𝑥 ∈ ( M ‘ 𝑐 ) ↔ 𝑥 ∈ ( M ‘ 𝑏 ) ) ) |
27 |
26
|
rspcev |
⊢ ( ( 𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( M ‘ 𝑏 ) ) → ∃ 𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘ 𝑐 ) ) |
28 |
21 24 27
|
syl2anc |
⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑥 ∈ ( O ‘ 𝑏 ) ) ) → ∃ 𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘ 𝑐 ) ) |
29 |
28
|
rexlimdvaa |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘ 𝑏 ) → ∃ 𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘ 𝑐 ) ) ) |
30 |
20 29
|
impbid |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( ∃ 𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘ 𝑐 ) ↔ ∃ 𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘ 𝑏 ) ) ) |
31 |
|
elold |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ ( O ‘ 𝐴 ) ↔ ∃ 𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘ 𝑐 ) ) ) |
32 |
10 31
|
syl |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ( O ‘ 𝐴 ) ↔ ∃ 𝑐 ∈ 𝐴 𝑥 ∈ ( M ‘ 𝑐 ) ) ) |
33 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑏 ∈ 𝐴 ( O ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘ 𝑏 ) ) |
34 |
33
|
a1i |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ∪ 𝑏 ∈ 𝐴 ( O ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐴 𝑥 ∈ ( O ‘ 𝑏 ) ) ) |
35 |
30 32 34
|
3bitr4d |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ( O ‘ 𝐴 ) ↔ 𝑥 ∈ ∪ 𝑏 ∈ 𝐴 ( O ‘ 𝑏 ) ) ) |
36 |
35
|
eqrdv |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( O ‘ 𝐴 ) = ∪ 𝑏 ∈ 𝐴 ( O ‘ 𝑏 ) ) |
37 |
|
oldf |
⊢ O : On ⟶ 𝒫 No |
38 |
|
ffun |
⊢ ( O : On ⟶ 𝒫 No → Fun O ) |
39 |
|
funiunfv |
⊢ ( Fun O → ∪ 𝑏 ∈ 𝐴 ( O ‘ 𝑏 ) = ∪ ( O “ 𝐴 ) ) |
40 |
37 38 39
|
mp2b |
⊢ ∪ 𝑏 ∈ 𝐴 ( O ‘ 𝑏 ) = ∪ ( O “ 𝐴 ) |
41 |
36 40
|
eqtrdi |
⊢ ( ( Lim 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( O ‘ 𝐴 ) = ∪ ( O “ 𝐴 ) ) |