Metamath Proof Explorer


Theorem oldlim

Description: The value of the old set at a limit ordinal. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion oldlim Lim A A V Old A = Old A

Proof

Step Hyp Ref Expression
1 simprl Lim A A V c A x M c c A
2 limsuc Lim A c A suc c A
3 2 ad2antrr Lim A A V c A x M c c A suc c A
4 1 3 mpbid Lim A A V c A x M c suc c A
5 simprr Lim A A V c A x M c x M c
6 limord Lim A Ord A
7 elex A V A V
8 6 7 anim12i Lim A A V Ord A A V
9 elon2 A On Ord A A V
10 8 9 sylibr Lim A A V A On
11 onelon A On c A c On
12 10 1 11 syl2an2r Lim A A V c A x M c c On
13 madeoldsuc c On M c = Old suc c
14 12 13 syl Lim A A V c A x M c M c = Old suc c
15 5 14 eleqtrd Lim A A V c A x M c x Old suc c
16 fveq2 b = suc c Old b = Old suc c
17 16 eleq2d b = suc c x Old b x Old suc c
18 17 rspcev suc c A x Old suc c b A x Old b
19 4 15 18 syl2anc Lim A A V c A x M c b A x Old b
20 19 expr Lim A A V c A x M c b A x Old b
21 20 rexlimdva Lim A A V c A x M c b A x Old b
22 simprl Lim A A V b A x Old b b A
23 onelon A On b A b On
24 10 22 23 syl2an2r Lim A A V b A x Old b b On
25 oldssmade b On Old b M b
26 24 25 syl Lim A A V b A x Old b Old b M b
27 simprr Lim A A V b A x Old b x Old b
28 26 27 sseldd Lim A A V b A x Old b x M b
29 fveq2 c = b M c = M b
30 29 eleq2d c = b x M c x M b
31 30 rspcev b A x M b c A x M c
32 22 28 31 syl2anc Lim A A V b A x Old b c A x M c
33 32 expr Lim A A V b A x Old b c A x M c
34 33 rexlimdva Lim A A V b A x Old b c A x M c
35 21 34 impbid Lim A A V c A x M c b A x Old b
36 elold A On x Old A c A x M c
37 10 36 syl Lim A A V x Old A c A x M c
38 eliun x b A Old b b A x Old b
39 38 a1i Lim A A V x b A Old b b A x Old b
40 35 37 39 3bitr4d Lim A A V x Old A x b A Old b
41 40 eqrdv Lim A A V Old A = b A Old b
42 oldf Old : On 𝒫 No
43 ffun Old : On 𝒫 No Fun Old
44 funiunfv Fun Old b A Old b = Old A
45 42 43 44 mp2b b A Old b = Old A
46 41 45 eqtrdi Lim A A V Old A = Old A