Metamath Proof Explorer


Theorem oldlim

Description: The value of the old set at a limit ordinal. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion oldlim Lim A A V Old A = Old A

Proof

Step Hyp Ref Expression
1 simprl Lim A A V c A x M c c A
2 limsuc Lim A c A suc c A
3 2 ad2antrr Lim A A V c A x M c c A suc c A
4 1 3 mpbid Lim A A V c A x M c suc c A
5 simprr Lim A A V c A x M c x M c
6 limord Lim A Ord A
7 elex A V A V
8 6 7 anim12i Lim A A V Ord A A V
9 elon2 A On Ord A A V
10 8 9 sylibr Lim A A V A On
11 onelon A On c A c On
12 10 1 11 syl2an2r Lim A A V c A x M c c On
13 madeoldsuc c On M c = Old suc c
14 12 13 syl Lim A A V c A x M c M c = Old suc c
15 5 14 eleqtrd Lim A A V c A x M c x Old suc c
16 fveq2 b = suc c Old b = Old suc c
17 16 eleq2d b = suc c x Old b x Old suc c
18 17 rspcev suc c A x Old suc c b A x Old b
19 4 15 18 syl2anc Lim A A V c A x M c b A x Old b
20 19 rexlimdvaa Lim A A V c A x M c b A x Old b
21 simprl Lim A A V b A x Old b b A
22 oldssmade Old b M b
23 simprr Lim A A V b A x Old b x Old b
24 22 23 sselid Lim A A V b A x Old b x M b
25 fveq2 c = b M c = M b
26 25 eleq2d c = b x M c x M b
27 26 rspcev b A x M b c A x M c
28 21 24 27 syl2anc Lim A A V b A x Old b c A x M c
29 28 rexlimdvaa Lim A A V b A x Old b c A x M c
30 20 29 impbid Lim A A V c A x M c b A x Old b
31 elold A On x Old A c A x M c
32 10 31 syl Lim A A V x Old A c A x M c
33 eliun x b A Old b b A x Old b
34 33 a1i Lim A A V x b A Old b b A x Old b
35 30 32 34 3bitr4d Lim A A V x Old A x b A Old b
36 35 eqrdv Lim A A V Old A = b A Old b
37 oldf Old : On 𝒫 No
38 ffun Old : On 𝒫 No Fun Old
39 funiunfv Fun Old b A Old b = Old A
40 37 38 39 mp2b b A Old b = Old A
41 36 40 eqtrdi Lim A A V Old A = Old A