| Step | Hyp | Ref | Expression | 
						
							| 1 |  | projf1o.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | projf1o.2 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  〈 𝐴 ,  𝑥 〉 ) | 
						
							| 3 |  | snidg | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 7 | 5 6 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  〈 𝐴 ,  𝑦 〉  ∈  ( { 𝐴 }  ×  𝐵 ) ) | 
						
							| 8 |  | opeq2 | ⊢ ( 𝑥  =  𝑦  →  〈 𝐴 ,  𝑥 〉  =  〈 𝐴 ,  𝑦 〉 ) | 
						
							| 9 | 8 | cbvmptv | ⊢ ( 𝑥  ∈  𝐵  ↦  〈 𝐴 ,  𝑥 〉 )  =  ( 𝑦  ∈  𝐵  ↦  〈 𝐴 ,  𝑦 〉 ) | 
						
							| 10 | 2 9 | eqtri | ⊢ 𝐹  =  ( 𝑦  ∈  𝐵  ↦  〈 𝐴 ,  𝑦 〉 ) | 
						
							| 11 | 7 10 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( { 𝐴 }  ×  𝐵 ) ) | 
						
							| 12 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) )  →  𝜑 ) | 
						
							| 13 | 2 8 6 7 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑦 )  =  〈 𝐴 ,  𝑦 〉 ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  〈 𝐴 ,  𝑦 〉  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  〈 𝐴 ,  𝑦 〉  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) )  →  〈 𝐴 ,  𝑦 〉  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 18 |  | opeq2 | ⊢ ( 𝑦  =  𝑧  →  〈 𝐴 ,  𝑦 〉  =  〈 𝐴 ,  𝑧 〉 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  𝐵 ) | 
						
							| 20 |  | opex | ⊢ 〈 𝐴 ,  𝑧 〉  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  〈 𝐴 ,  𝑧 〉  ∈  V ) | 
						
							| 22 | 10 18 19 21 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑧 )  =  〈 𝐴 ,  𝑧 〉 ) | 
						
							| 23 | 22 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑧 )  =  〈 𝐴 ,  𝑧 〉 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) )  →  ( 𝐹 ‘ 𝑧 )  =  〈 𝐴 ,  𝑧 〉 ) | 
						
							| 25 | 16 17 24 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) )  →  〈 𝐴 ,  𝑦 〉  =  〈 𝐴 ,  𝑧 〉 ) | 
						
							| 26 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  𝑧  ∈  V ) | 
						
							| 28 |  | opthg2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑧  ∈  V )  →  ( 〈 𝐴 ,  𝑦 〉  =  〈 𝐴 ,  𝑧 〉  ↔  ( 𝐴  =  𝐴  ∧  𝑦  =  𝑧 ) ) ) | 
						
							| 29 | 1 27 28 | syl2anc | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝑦 〉  =  〈 𝐴 ,  𝑧 〉  ↔  ( 𝐴  =  𝐴  ∧  𝑦  =  𝑧 ) ) ) | 
						
							| 30 | 29 | simplbda | ⊢ ( ( 𝜑  ∧  〈 𝐴 ,  𝑦 〉  =  〈 𝐴 ,  𝑧 〉 )  →  𝑦  =  𝑧 ) | 
						
							| 31 | 12 25 30 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) )  →  𝑦  =  𝑧 ) | 
						
							| 32 | 31 | ex | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 33 | 32 | 3expb | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 34 | 33 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 35 |  | dff13 | ⊢ ( 𝐹 : 𝐵 –1-1→ ( { 𝐴 }  ×  𝐵 )  ↔  ( 𝐹 : 𝐵 ⟶ ( { 𝐴 }  ×  𝐵 )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 36 | 11 34 35 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝐵 –1-1→ ( { 𝐴 }  ×  𝐵 ) ) | 
						
							| 37 |  | elsnxp | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑧  ∈  ( { 𝐴 }  ×  𝐵 )  ↔  ∃ 𝑦  ∈  𝐵 𝑧  =  〈 𝐴 ,  𝑦 〉 ) ) | 
						
							| 38 | 1 37 | syl | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( { 𝐴 }  ×  𝐵 )  ↔  ∃ 𝑦  ∈  𝐵 𝑧  =  〈 𝐴 ,  𝑦 〉 ) ) | 
						
							| 39 | 38 | biimpa | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( { 𝐴 }  ×  𝐵 ) )  →  ∃ 𝑦  ∈  𝐵 𝑧  =  〈 𝐴 ,  𝑦 〉 ) | 
						
							| 40 | 13 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑧  =  〈 𝐴 ,  𝑦 〉 )  →  ( 𝐹 ‘ 𝑦 )  =  〈 𝐴 ,  𝑦 〉 ) | 
						
							| 41 |  | id | ⊢ ( 𝑧  =  〈 𝐴 ,  𝑦 〉  →  𝑧  =  〈 𝐴 ,  𝑦 〉 ) | 
						
							| 42 | 41 | eqcomd | ⊢ ( 𝑧  =  〈 𝐴 ,  𝑦 〉  →  〈 𝐴 ,  𝑦 〉  =  𝑧 ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑧  =  〈 𝐴 ,  𝑦 〉 )  →  〈 𝐴 ,  𝑦 〉  =  𝑧 ) | 
						
							| 44 | 40 43 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑧  =  〈 𝐴 ,  𝑦 〉 )  →  𝑧  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 45 | 44 | ex | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑧  =  〈 𝐴 ,  𝑦 〉  →  𝑧  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 46 | 45 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( { 𝐴 }  ×  𝐵 ) )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑧  =  〈 𝐴 ,  𝑦 〉  →  𝑧  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 47 | 46 | reximdva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( { 𝐴 }  ×  𝐵 ) )  →  ( ∃ 𝑦  ∈  𝐵 𝑧  =  〈 𝐴 ,  𝑦 〉  →  ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 48 | 39 47 | mpd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( { 𝐴 }  ×  𝐵 ) )  →  ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 49 | 48 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ( { 𝐴 }  ×  𝐵 ) ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 50 |  | dffo3 | ⊢ ( 𝐹 : 𝐵 –onto→ ( { 𝐴 }  ×  𝐵 )  ↔  ( 𝐹 : 𝐵 ⟶ ( { 𝐴 }  ×  𝐵 )  ∧  ∀ 𝑧  ∈  ( { 𝐴 }  ×  𝐵 ) ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 51 | 11 49 50 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝐵 –onto→ ( { 𝐴 }  ×  𝐵 ) ) | 
						
							| 52 |  | df-f1o | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ ( { 𝐴 }  ×  𝐵 )  ↔  ( 𝐹 : 𝐵 –1-1→ ( { 𝐴 }  ×  𝐵 )  ∧  𝐹 : 𝐵 –onto→ ( { 𝐴 }  ×  𝐵 ) ) ) | 
						
							| 53 | 36 51 52 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝐵 –1-1-onto→ ( { 𝐴 }  ×  𝐵 ) ) |