Step |
Hyp |
Ref |
Expression |
1 |
|
shatomistic.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
eleq1 |
⊢ ( 𝑦 = 0ℎ → ( 𝑦 ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ↔ 0ℎ ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) |
3 |
1
|
sheli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
4 |
|
spansnsh |
⊢ ( 𝑦 ∈ ℋ → ( span ‘ { 𝑦 } ) ∈ Sℋ ) |
5 |
|
spanid |
⊢ ( ( span ‘ { 𝑦 } ) ∈ Sℋ → ( span ‘ ( span ‘ { 𝑦 } ) ) = ( span ‘ { 𝑦 } ) ) |
6 |
3 4 5
|
3syl |
⊢ ( 𝑦 ∈ 𝐴 → ( span ‘ ( span ‘ { 𝑦 } ) ) = ( span ‘ { 𝑦 } ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ ( span ‘ { 𝑦 } ) ) = ( span ‘ { 𝑦 } ) ) |
8 |
|
spansna |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ∈ HAtoms ) |
9 |
3 8
|
sylan |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ∈ HAtoms ) |
10 |
|
spansnss |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ) → ( span ‘ { 𝑦 } ) ⊆ 𝐴 ) |
11 |
1 10
|
mpan |
⊢ ( 𝑦 ∈ 𝐴 → ( span ‘ { 𝑦 } ) ⊆ 𝐴 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ⊆ 𝐴 ) |
13 |
|
sseq1 |
⊢ ( 𝑥 = ( span ‘ { 𝑦 } ) → ( 𝑥 ⊆ 𝐴 ↔ ( span ‘ { 𝑦 } ) ⊆ 𝐴 ) ) |
14 |
13
|
elrab |
⊢ ( ( span ‘ { 𝑦 } ) ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ↔ ( ( span ‘ { 𝑦 } ) ∈ HAtoms ∧ ( span ‘ { 𝑦 } ) ⊆ 𝐴 ) ) |
15 |
9 12 14
|
sylanbrc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
16 |
|
elssuni |
⊢ ( ( span ‘ { 𝑦 } ) ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → ( span ‘ { 𝑦 } ) ⊆ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
17 |
|
atssch |
⊢ HAtoms ⊆ Cℋ |
18 |
|
chsssh |
⊢ Cℋ ⊆ Sℋ |
19 |
17 18
|
sstri |
⊢ HAtoms ⊆ Sℋ |
20 |
|
rabss2 |
⊢ ( HAtoms ⊆ Sℋ → { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) |
21 |
|
uniss |
⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } → ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) |
22 |
19 20 21
|
mp2b |
⊢ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } |
23 |
|
unimax |
⊢ ( 𝐴 ∈ Sℋ → ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) |
24 |
1 23
|
ax-mp |
⊢ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } = 𝐴 |
25 |
1
|
shssii |
⊢ 𝐴 ⊆ ℋ |
26 |
24 25
|
eqsstri |
⊢ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ ℋ |
27 |
22 26
|
sstri |
⊢ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ℋ |
28 |
|
spanss |
⊢ ( ( ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ℋ ∧ ( span ‘ { 𝑦 } ) ⊆ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) → ( span ‘ ( span ‘ { 𝑦 } ) ) ⊆ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
29 |
27 28
|
mpan |
⊢ ( ( span ‘ { 𝑦 } ) ⊆ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → ( span ‘ ( span ‘ { 𝑦 } ) ) ⊆ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
30 |
15 16 29
|
3syl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ ( span ‘ { 𝑦 } ) ) ⊆ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
31 |
7 30
|
eqsstrrd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → ( span ‘ { 𝑦 } ) ⊆ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
32 |
|
spansnid |
⊢ ( 𝑦 ∈ ℋ → 𝑦 ∈ ( span ‘ { 𝑦 } ) ) |
33 |
3 32
|
syl |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( span ‘ { 𝑦 } ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → 𝑦 ∈ ( span ‘ { 𝑦 } ) ) |
35 |
31 34
|
sseldd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ≠ 0ℎ ) → 𝑦 ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
36 |
|
spancl |
⊢ ( ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ℋ → ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∈ Sℋ ) |
37 |
|
sh0 |
⊢ ( ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∈ Sℋ → 0ℎ ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
38 |
27 36 37
|
mp2b |
⊢ 0ℎ ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
39 |
38
|
a1i |
⊢ ( 𝑦 ∈ 𝐴 → 0ℎ ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
40 |
2 35 39
|
pm2.61ne |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
41 |
40
|
ssriv |
⊢ 𝐴 ⊆ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
42 |
|
spanss |
⊢ ( ( ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ ℋ ∧ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) → ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ ( span ‘ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) ) |
43 |
26 22 42
|
mp2an |
⊢ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ ( span ‘ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) |
44 |
24
|
fveq2i |
⊢ ( span ‘ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) = ( span ‘ 𝐴 ) |
45 |
|
spanid |
⊢ ( 𝐴 ∈ Sℋ → ( span ‘ 𝐴 ) = 𝐴 ) |
46 |
1 45
|
ax-mp |
⊢ ( span ‘ 𝐴 ) = 𝐴 |
47 |
44 46
|
eqtri |
⊢ ( span ‘ ∪ { 𝑥 ∈ Sℋ ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 |
48 |
43 47
|
sseqtri |
⊢ ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ 𝐴 |
49 |
41 48
|
eqssi |
⊢ 𝐴 = ( span ‘ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |