| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | signsvf.e | ⊢ ( 𝜑  →  𝐸  ∈  ( Word  ℝ  ∖  { ∅ } ) ) | 
						
							| 6 |  | signsvf.0 | ⊢ ( 𝜑  →  ( 𝐸 ‘ 0 )  ≠  0 ) | 
						
							| 7 |  | signsvf.f | ⊢ ( 𝜑  →  𝐹  =  ( 𝐸  ++  〈“ 𝐴 ”〉 ) ) | 
						
							| 8 |  | signsvf.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 9 |  | signsvf.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐸 ) | 
						
							| 10 |  | signsvf.b | ⊢ 𝐵  =  ( 𝐸 ‘ ( 𝑁  −  1 ) ) | 
						
							| 11 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  𝐸  ∈  ( Word  ℝ  ∖  { ∅ } ) ) | 
						
							| 12 | 5 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  Word  ℝ ) | 
						
							| 13 |  | wrdf | ⊢ ( 𝐸  ∈  Word  ℝ  →  𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ ℝ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ ℝ ) | 
						
							| 15 | 9 | oveq1i | ⊢ ( 𝑁  −  1 )  =  ( ( ♯ ‘ 𝐸 )  −  1 ) | 
						
							| 16 |  | eldifsn | ⊢ ( 𝐸  ∈  ( Word  ℝ  ∖  { ∅ } )  ↔  ( 𝐸  ∈  Word  ℝ  ∧  𝐸  ≠  ∅ ) ) | 
						
							| 17 | 5 16 | sylib | ⊢ ( 𝜑  →  ( 𝐸  ∈  Word  ℝ  ∧  𝐸  ≠  ∅ ) ) | 
						
							| 18 |  | lennncl | ⊢ ( ( 𝐸  ∈  Word  ℝ  ∧  𝐸  ≠  ∅ )  →  ( ♯ ‘ 𝐸 )  ∈  ℕ ) | 
						
							| 19 |  | fzo0end | ⊢ ( ( ♯ ‘ 𝐸 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐸 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) | 
						
							| 20 | 17 18 19 | 3syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐸 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) | 
						
							| 21 | 15 20 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) | 
						
							| 22 | 14 21 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑁  −  1 ) )  ∈  ℝ ) | 
						
							| 23 | 22 | recnd | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑁  −  1 ) )  ∈  ℂ ) | 
						
							| 24 | 10 23 | eqeltrid | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  𝐵  ∈  ℂ ) | 
						
							| 26 | 8 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( 𝐵  ·  𝐴 )  <  0 ) | 
						
							| 29 | 28 | lt0ne0d | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( 𝐵  ·  𝐴 )  ≠  0 ) | 
						
							| 30 | 25 27 29 | mulne0bad | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  𝐵  ≠  0 ) | 
						
							| 31 | 10 30 | eqnetrrid | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( 𝐸 ‘ ( 𝑁  −  1 ) )  ≠  0 ) | 
						
							| 32 | 1 2 3 4 9 | signsvtn0 | ⊢ ( ( 𝐸  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐸 ‘ ( 𝑁  −  1 ) )  ≠  0 )  →  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) )  =  ( sgn ‘ ( 𝐸 ‘ ( 𝑁  −  1 ) ) ) ) | 
						
							| 33 | 10 | fveq2i | ⊢ ( sgn ‘ 𝐵 )  =  ( sgn ‘ ( 𝐸 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 34 | 32 33 | eqtr4di | ⊢ ( ( 𝐸  ∈  ( Word  ℝ  ∖  { ∅ } )  ∧  ( 𝐸 ‘ ( 𝑁  −  1 ) )  ≠  0 )  →  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) )  =  ( sgn ‘ 𝐵 ) ) | 
						
							| 35 | 11 31 34 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) )  =  ( sgn ‘ 𝐵 ) ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( sgn ‘ ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) )  =  ( sgn ‘ ( sgn ‘ 𝐵 ) ) ) | 
						
							| 37 | 10 22 | eqeltrid | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  𝐵  ∈  ℝ ) | 
						
							| 39 | 38 | rexrd | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  𝐵  ∈  ℝ* ) | 
						
							| 40 |  | sgnsgn | ⊢ ( 𝐵  ∈  ℝ*  →  ( sgn ‘ ( sgn ‘ 𝐵 ) )  =  ( sgn ‘ 𝐵 ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( sgn ‘ ( sgn ‘ 𝐵 ) )  =  ( sgn ‘ 𝐵 ) ) | 
						
							| 42 | 36 41 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( sgn ‘ ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) )  =  ( sgn ‘ 𝐵 ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) ) )  =  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) ) ) | 
						
							| 44 | 26 24 | mulcomd | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 45 | 44 | breq1d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  <  0  ↔  ( 𝐵  ·  𝐴 )  <  0 ) ) | 
						
							| 46 |  | sgnmulsgn | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  ·  𝐵 )  <  0  ↔  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) )  <  0 ) ) | 
						
							| 47 | 8 37 46 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  <  0  ↔  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) )  <  0 ) ) | 
						
							| 48 | 45 47 | bitr3d | ⊢ ( 𝜑  →  ( ( 𝐵  ·  𝐴 )  <  0  ↔  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) )  <  0 ) ) | 
						
							| 49 | 48 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) )  <  0 ) | 
						
							| 50 | 43 49 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) ) )  <  0 ) | 
						
							| 51 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  𝐴  ∈  ℝ ) | 
						
							| 52 |  | sgnclre | ⊢ ( 𝐵  ∈  ℝ  →  ( sgn ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 53 | 38 52 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( sgn ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 54 | 35 53 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) )  ∈  ℝ ) | 
						
							| 55 |  | sgnmulsgn | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) )  ∈  ℝ )  →  ( ( 𝐴  ·  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) )  <  0  ↔  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) ) )  <  0 ) ) | 
						
							| 56 | 51 54 55 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( ( 𝐴  ·  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) )  <  0  ↔  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) ) )  <  0 ) ) | 
						
							| 57 | 50 56 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( 𝐴  ·  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) )  <  0 ) | 
						
							| 58 |  | eqid | ⊢ ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) )  =  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 58 | signsvtn | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  ( ( 𝑇 ‘ 𝐸 ) ‘ ( 𝑁  −  1 ) ) )  <  0 )  →  ( ( 𝑉 ‘ 𝐹 )  −  ( 𝑉 ‘ 𝐸 ) )  =  1 ) | 
						
							| 60 | 57 59 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝐵  ·  𝐴 )  <  0 )  →  ( ( 𝑉 ‘ 𝐹 )  −  ( 𝑉 ‘ 𝐸 ) )  =  1 ) |