| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srabn.a | ⊢ 𝐴  =  ( ( subringAlg  ‘ 𝑊 ) ‘ 𝑆 ) | 
						
							| 2 |  | srabn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  𝑊  ∈  CMetSp ) | 
						
							| 4 |  | eqidd | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 5 | 1 | a1i | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  𝐴  =  ( ( subringAlg  ‘ 𝑊 ) ‘ 𝑆 ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 7 | 6 | subrgss | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 9 | 5 8 | srabase | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( Base ‘ 𝑊 )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 10 | 5 8 | srads | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( dist ‘ 𝑊 )  =  ( dist ‘ 𝐴 ) ) | 
						
							| 11 | 10 | reseq1d | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( ( dist ‘ 𝑊 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) )  =  ( ( dist ‘ 𝐴 )  ↾  ( ( Base ‘ 𝑊 )  ×  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 12 | 5 8 | sratopn | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( TopOpen ‘ 𝑊 )  =  ( TopOpen ‘ 𝐴 ) ) | 
						
							| 13 | 4 9 11 12 | cmspropd | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( 𝑊  ∈  CMetSp  ↔  𝐴  ∈  CMetSp ) ) | 
						
							| 14 | 3 13 | mpbid | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  𝐴  ∈  CMetSp ) | 
						
							| 15 |  | eqid | ⊢ ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝐴 ) | 
						
							| 16 | 15 | isbn | ⊢ ( 𝐴  ∈  Ban  ↔  ( 𝐴  ∈  NrmVec  ∧  𝐴  ∈  CMetSp  ∧  ( Scalar ‘ 𝐴 )  ∈  CMetSp ) ) | 
						
							| 17 |  | 3anrot | ⊢ ( ( 𝐴  ∈  NrmVec  ∧  𝐴  ∈  CMetSp  ∧  ( Scalar ‘ 𝐴 )  ∈  CMetSp )  ↔  ( 𝐴  ∈  CMetSp  ∧  ( Scalar ‘ 𝐴 )  ∈  CMetSp  ∧  𝐴  ∈  NrmVec ) ) | 
						
							| 18 |  | 3anass | ⊢ ( ( 𝐴  ∈  CMetSp  ∧  ( Scalar ‘ 𝐴 )  ∈  CMetSp  ∧  𝐴  ∈  NrmVec )  ↔  ( 𝐴  ∈  CMetSp  ∧  ( ( Scalar ‘ 𝐴 )  ∈  CMetSp  ∧  𝐴  ∈  NrmVec ) ) ) | 
						
							| 19 | 16 17 18 | 3bitri | ⊢ ( 𝐴  ∈  Ban  ↔  ( 𝐴  ∈  CMetSp  ∧  ( ( Scalar ‘ 𝐴 )  ∈  CMetSp  ∧  𝐴  ∈  NrmVec ) ) ) | 
						
							| 20 | 19 | baib | ⊢ ( 𝐴  ∈  CMetSp  →  ( 𝐴  ∈  Ban  ↔  ( ( Scalar ‘ 𝐴 )  ∈  CMetSp  ∧  𝐴  ∈  NrmVec ) ) ) | 
						
							| 21 | 14 20 | syl | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( 𝐴  ∈  Ban  ↔  ( ( Scalar ‘ 𝐴 )  ∈  CMetSp  ∧  𝐴  ∈  NrmVec ) ) ) | 
						
							| 22 | 5 8 | srasca | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( 𝑊  ↾s  𝑆 )  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( ( 𝑊  ↾s  𝑆 )  ∈  CMetSp  ↔  ( Scalar ‘ 𝐴 )  ∈  CMetSp ) ) | 
						
							| 24 |  | eqid | ⊢ ( 𝑊  ↾s  𝑆 )  =  ( 𝑊  ↾s  𝑆 ) | 
						
							| 25 | 24 6 2 | cmsss | ⊢ ( ( 𝑊  ∈  CMetSp  ∧  𝑆  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( 𝑊  ↾s  𝑆 )  ∈  CMetSp  ↔  𝑆  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 26 | 3 8 25 | syl2anc | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( ( 𝑊  ↾s  𝑆 )  ∈  CMetSp  ↔  𝑆  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 27 | 23 26 | bitr3d | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( ( Scalar ‘ 𝐴 )  ∈  CMetSp  ↔  𝑆  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 28 | 1 | sranlm | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  𝐴  ∈  NrmMod ) | 
						
							| 29 | 28 | 3adant2 | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  𝐴  ∈  NrmMod ) | 
						
							| 30 | 15 | isnvc2 | ⊢ ( 𝐴  ∈  NrmVec  ↔  ( 𝐴  ∈  NrmMod  ∧  ( Scalar ‘ 𝐴 )  ∈  DivRing ) ) | 
						
							| 31 | 30 | baib | ⊢ ( 𝐴  ∈  NrmMod  →  ( 𝐴  ∈  NrmVec  ↔  ( Scalar ‘ 𝐴 )  ∈  DivRing ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( 𝐴  ∈  NrmVec  ↔  ( Scalar ‘ 𝐴 )  ∈  DivRing ) ) | 
						
							| 33 | 22 | eleq1d | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( ( 𝑊  ↾s  𝑆 )  ∈  DivRing  ↔  ( Scalar ‘ 𝐴 )  ∈  DivRing ) ) | 
						
							| 34 | 32 33 | bitr4d | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( 𝐴  ∈  NrmVec  ↔  ( 𝑊  ↾s  𝑆 )  ∈  DivRing ) ) | 
						
							| 35 | 27 34 | anbi12d | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( ( ( Scalar ‘ 𝐴 )  ∈  CMetSp  ∧  𝐴  ∈  NrmVec )  ↔  ( 𝑆  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑊  ↾s  𝑆 )  ∈  DivRing ) ) ) | 
						
							| 36 | 21 35 | bitrd | ⊢ ( ( 𝑊  ∈  NrmRing  ∧  𝑊  ∈  CMetSp  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( 𝐴  ∈  Ban  ↔  ( 𝑆  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝑊  ↾s  𝑆 )  ∈  DivRing ) ) ) |