| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sranlm.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) |
| 2 |
|
nrgngp |
⊢ ( 𝑊 ∈ NrmRing → 𝑊 ∈ NrmGrp ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑊 ∈ NrmGrp ) |
| 4 |
|
eqidd |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
| 5 |
1
|
a1i |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 7 |
6
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 9 |
5 8
|
srabase |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 10 |
5 8
|
sraaddg |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐴 ) ) |
| 11 |
10
|
oveqdr |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
| 12 |
5 8
|
srads |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( dist ‘ 𝑊 ) = ( dist ‘ 𝐴 ) ) |
| 13 |
12
|
reseq1d |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝐴 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
| 14 |
5 8
|
sratopn |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝐴 ) ) |
| 15 |
4 9 11 13 14
|
ngppropd |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ∈ NrmGrp ↔ 𝐴 ∈ NrmGrp ) ) |
| 16 |
3 15
|
mpbid |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ NrmGrp ) |
| 17 |
1
|
sralmod |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ LMod ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ LMod ) |
| 19 |
5 8
|
srasca |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 20 |
|
eqid |
⊢ ( 𝑊 ↾s 𝑆 ) = ( 𝑊 ↾s 𝑆 ) |
| 21 |
20
|
subrgnrg |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝑆 ) ∈ NrmRing ) |
| 22 |
19 21
|
eqeltrrd |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Scalar ‘ 𝐴 ) ∈ NrmRing ) |
| 23 |
16 18 22
|
3jca |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ NrmGrp ∧ 𝐴 ∈ LMod ∧ ( Scalar ‘ 𝐴 ) ∈ NrmRing ) ) |
| 24 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
| 25 |
|
eqid |
⊢ ( AbsVal ‘ 𝑊 ) = ( AbsVal ‘ 𝑊 ) |
| 26 |
24 25
|
nrgabv |
⊢ ( 𝑊 ∈ NrmRing → ( norm ‘ 𝑊 ) ∈ ( AbsVal ‘ 𝑊 ) ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( norm ‘ 𝑊 ) ∈ ( AbsVal ‘ 𝑊 ) ) |
| 28 |
8
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 29 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 30 |
20
|
subrgbas |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 32 |
19
|
fveq2d |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 33 |
31 32
|
eqtrd |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑆 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 35 |
29 34
|
eleqtrrd |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ 𝑆 ) |
| 36 |
28 35
|
sseldd |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 37 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 38 |
9
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 39 |
37 38
|
eleqtrrd |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 40 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
| 41 |
25 6 40
|
abvmul |
⊢ ( ( ( norm ‘ 𝑊 ) ∈ ( AbsVal ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) |
| 42 |
27 36 39 41
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) |
| 43 |
9 10 12
|
nmpropd |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( norm ‘ 𝑊 ) = ( norm ‘ 𝐴 ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( norm ‘ 𝑊 ) = ( norm ‘ 𝐴 ) ) |
| 45 |
5 8
|
sravsca |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 46 |
45
|
oveqdr |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) |
| 47 |
44 46
|
fveq12d |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) = ( ( norm ‘ 𝐴 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) ) |
| 48 |
42 47
|
eqtr3d |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) = ( ( norm ‘ 𝐴 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) ) |
| 49 |
|
subrgsubg |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 50 |
49
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 51 |
|
eqid |
⊢ ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) = ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) |
| 52 |
20 24 51
|
subgnm2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 53 |
50 35 52
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 54 |
19
|
adantr |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 55 |
54
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) = ( norm ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 56 |
55
|
fveq1d |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) ) |
| 57 |
53 56
|
eqtr3d |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) = ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) ) |
| 58 |
44
|
fveq1d |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) = ( ( norm ‘ 𝐴 ) ‘ 𝑦 ) ) |
| 59 |
57 58
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
| 60 |
48 59
|
eqtr3d |
⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ 𝐴 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
| 61 |
60
|
ralrimivva |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( ( norm ‘ 𝐴 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
| 62 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 63 |
|
eqid |
⊢ ( norm ‘ 𝐴 ) = ( norm ‘ 𝐴 ) |
| 64 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
| 65 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
| 66 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
| 67 |
|
eqid |
⊢ ( norm ‘ ( Scalar ‘ 𝐴 ) ) = ( norm ‘ ( Scalar ‘ 𝐴 ) ) |
| 68 |
62 63 64 65 66 67
|
isnlm |
⊢ ( 𝐴 ∈ NrmMod ↔ ( ( 𝐴 ∈ NrmGrp ∧ 𝐴 ∈ LMod ∧ ( Scalar ‘ 𝐴 ) ∈ NrmRing ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( ( norm ‘ 𝐴 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) |
| 69 |
23 61 68
|
sylanbrc |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ NrmMod ) |