| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlmvscn.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
nlmvscn.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
nlmvscn.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 4 |
|
nlmvscn.d |
⊢ 𝐷 = ( dist ‘ 𝑊 ) |
| 5 |
|
nlmvscn.e |
⊢ 𝐸 = ( dist ‘ 𝐹 ) |
| 6 |
|
nlmvscn.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 7 |
|
nlmvscn.a |
⊢ 𝐴 = ( norm ‘ 𝐹 ) |
| 8 |
|
nlmvscn.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 9 |
|
nlmvscn.t |
⊢ 𝑇 = ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) |
| 10 |
|
nlmvscn.u |
⊢ 𝑈 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) |
| 11 |
|
nlmvscn.w |
⊢ ( 𝜑 → 𝑊 ∈ NrmMod ) |
| 12 |
|
nlmvscn.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 13 |
|
nlmvscn.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
| 14 |
|
nlmvscn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 15 |
|
nlmvscn.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
| 16 |
|
nlmvscn.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 17 |
|
nlmvscn.1 |
⊢ ( 𝜑 → ( 𝐵 𝐸 𝐶 ) < 𝑈 ) |
| 18 |
|
nlmvscn.2 |
⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) < 𝑇 ) |
| 19 |
|
nlmngp |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |
| 20 |
11 19
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ NrmGrp ) |
| 21 |
|
ngpms |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ MetSp ) |
| 23 |
|
nlmlmod |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) |
| 24 |
11 23
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 25 |
2 1 8 3
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
| 26 |
24 13 14 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
| 27 |
2 1 8 3
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐶 · 𝑌 ) ∈ 𝑉 ) |
| 28 |
24 15 16 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 · 𝑌 ) ∈ 𝑉 ) |
| 29 |
2 4
|
mscl |
⊢ ( ( 𝑊 ∈ MetSp ∧ ( 𝐵 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) ∈ ℝ ) |
| 30 |
22 26 28 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) ∈ ℝ ) |
| 31 |
2 1 8 3
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐵 · 𝑌 ) ∈ 𝑉 ) |
| 32 |
24 13 16 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 · 𝑌 ) ∈ 𝑉 ) |
| 33 |
2 4
|
mscl |
⊢ ( ( 𝑊 ∈ MetSp ∧ ( 𝐵 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐵 · 𝑌 ) ∈ 𝑉 ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) ∈ ℝ ) |
| 34 |
22 26 32 33
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) ∈ ℝ ) |
| 35 |
2 4
|
mscl |
⊢ ( ( 𝑊 ∈ MetSp ∧ ( 𝐵 · 𝑌 ) ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ) → ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ∈ ℝ ) |
| 36 |
22 32 28 35
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ∈ ℝ ) |
| 37 |
34 36
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) + ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) ∈ ℝ ) |
| 38 |
12
|
rpred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 39 |
2 4
|
mstri |
⊢ ( ( 𝑊 ∈ MetSp ∧ ( ( 𝐵 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ∧ ( 𝐵 · 𝑌 ) ∈ 𝑉 ) ) → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) ≤ ( ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) + ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) ) |
| 40 |
22 26 28 32 39
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) ≤ ( ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) + ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) ) |
| 41 |
1
|
nlmngp2 |
⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp ) |
| 42 |
11 41
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ NrmGrp ) |
| 43 |
3 7
|
nmcl |
⊢ ( ( 𝐹 ∈ NrmGrp ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐵 ) ∈ ℝ ) |
| 44 |
42 13 43
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐵 ) ∈ ℝ ) |
| 45 |
3 7
|
nmge0 |
⊢ ( ( 𝐹 ∈ NrmGrp ∧ 𝐵 ∈ 𝐾 ) → 0 ≤ ( 𝐴 ‘ 𝐵 ) ) |
| 46 |
42 13 45
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ‘ 𝐵 ) ) |
| 47 |
44 46
|
ge0p1rpd |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐵 ) + 1 ) ∈ ℝ+ ) |
| 48 |
47
|
rpred |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐵 ) + 1 ) ∈ ℝ ) |
| 49 |
2 4
|
mscl |
⊢ ( ( 𝑊 ∈ MetSp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 𝐷 𝑌 ) ∈ ℝ ) |
| 50 |
22 14 16 49
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) ∈ ℝ ) |
| 51 |
48 50
|
remulcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐵 ) + 1 ) · ( 𝑋 𝐷 𝑌 ) ) ∈ ℝ ) |
| 52 |
38
|
rehalfcld |
⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ ) |
| 53 |
2 8 1 3 4 7
|
nlmdsdi |
⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 ‘ 𝐵 ) · ( 𝑋 𝐷 𝑌 ) ) = ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) ) |
| 54 |
11 13 14 16 53
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐵 ) · ( 𝑋 𝐷 𝑌 ) ) = ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) ) |
| 55 |
|
msxms |
⊢ ( 𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp ) |
| 56 |
22 55
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ∞MetSp ) |
| 57 |
2 4
|
xmsge0 |
⊢ ( ( 𝑊 ∈ ∞MetSp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 0 ≤ ( 𝑋 𝐷 𝑌 ) ) |
| 58 |
56 14 16 57
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑋 𝐷 𝑌 ) ) |
| 59 |
44
|
lep1d |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐵 ) ≤ ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) |
| 60 |
44 48 50 58 59
|
lemul1ad |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐵 ) · ( 𝑋 𝐷 𝑌 ) ) ≤ ( ( ( 𝐴 ‘ 𝐵 ) + 1 ) · ( 𝑋 𝐷 𝑌 ) ) ) |
| 61 |
54 60
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) ≤ ( ( ( 𝐴 ‘ 𝐵 ) + 1 ) · ( 𝑋 𝐷 𝑌 ) ) ) |
| 62 |
18 9
|
breqtrdi |
⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) < ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) ) |
| 63 |
50 52 47
|
ltmuldiv2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐵 ) + 1 ) · ( 𝑋 𝐷 𝑌 ) ) < ( 𝑅 / 2 ) ↔ ( 𝑋 𝐷 𝑌 ) < ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) ) ) |
| 64 |
62 63
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐵 ) + 1 ) · ( 𝑋 𝐷 𝑌 ) ) < ( 𝑅 / 2 ) ) |
| 65 |
34 51 52 61 64
|
lelttrd |
⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) < ( 𝑅 / 2 ) ) |
| 66 |
|
ngpms |
⊢ ( 𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp ) |
| 67 |
42 66
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ MetSp ) |
| 68 |
3 5
|
mscl |
⊢ ( ( 𝐹 ∈ MetSp ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝐾 ) → ( 𝐵 𝐸 𝐶 ) ∈ ℝ ) |
| 69 |
67 13 15 68
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 𝐸 𝐶 ) ∈ ℝ ) |
| 70 |
2 6
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) ∈ ℝ ) |
| 71 |
20 14 70
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ ℝ ) |
| 72 |
12
|
rphalfcld |
⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ+ ) |
| 73 |
72 47
|
rpdivcld |
⊢ ( 𝜑 → ( ( 𝑅 / 2 ) / ( ( 𝐴 ‘ 𝐵 ) + 1 ) ) ∈ ℝ+ ) |
| 74 |
9 73
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 75 |
74
|
rpred |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 76 |
71 75
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ∈ ℝ ) |
| 77 |
69 76
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ∈ ℝ ) |
| 78 |
2 8 1 3 4 6 5
|
nlmdsdir |
⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐵 𝐸 𝐶 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) |
| 79 |
11 13 15 16 78
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐵 𝐸 𝐶 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) |
| 80 |
2 6
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑌 ) ∈ ℝ ) |
| 81 |
20 16 80
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ∈ ℝ ) |
| 82 |
|
msxms |
⊢ ( 𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp ) |
| 83 |
67 82
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ∞MetSp ) |
| 84 |
3 5
|
xmsge0 |
⊢ ( ( 𝐹 ∈ ∞MetSp ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝐾 ) → 0 ≤ ( 𝐵 𝐸 𝐶 ) ) |
| 85 |
83 13 15 84
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 𝐸 𝐶 ) ) |
| 86 |
81 71
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ∈ ℝ ) |
| 87 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
| 88 |
2 6 87
|
nm2dif |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
| 89 |
20 16 14 88
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
| 90 |
6 2 87 4
|
ngpdsr |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
| 91 |
20 14 16 90
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
| 92 |
89 91
|
breqtrrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ≤ ( 𝑋 𝐷 𝑌 ) ) |
| 93 |
50 75 18
|
ltled |
⊢ ( 𝜑 → ( 𝑋 𝐷 𝑌 ) ≤ 𝑇 ) |
| 94 |
86 50 75 92 93
|
letrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ≤ 𝑇 ) |
| 95 |
81 71 75
|
lesubadd2d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝑋 ) ) ≤ 𝑇 ↔ ( 𝑁 ‘ 𝑌 ) ≤ ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) |
| 96 |
94 95
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ≤ ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) |
| 97 |
81 76 69 85 96
|
lemul2ad |
⊢ ( 𝜑 → ( ( 𝐵 𝐸 𝐶 ) · ( 𝑁 ‘ 𝑌 ) ) ≤ ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) |
| 98 |
79 97
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ≤ ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) |
| 99 |
17 10
|
breqtrdi |
⊢ ( 𝜑 → ( 𝐵 𝐸 𝐶 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) |
| 100 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 101 |
2 6
|
nmge0 |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝑋 ) ) |
| 102 |
20 14 101
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝑋 ) ) |
| 103 |
71 74
|
ltaddrpd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) < ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) |
| 104 |
100 71 76 102 103
|
lelttrd |
⊢ ( 𝜑 → 0 < ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) |
| 105 |
|
ltmuldiv |
⊢ ( ( ( 𝐵 𝐸 𝐶 ) ∈ ℝ ∧ ( 𝑅 / 2 ) ∈ ℝ ∧ ( ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ∈ ℝ ∧ 0 < ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) → ( ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ↔ ( 𝐵 𝐸 𝐶 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) ) |
| 106 |
69 52 76 104 105
|
syl112anc |
⊢ ( 𝜑 → ( ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ↔ ( 𝐵 𝐸 𝐶 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) ) ) |
| 107 |
99 106
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐵 𝐸 𝐶 ) · ( ( 𝑁 ‘ 𝑋 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ) |
| 108 |
36 77 52 98 107
|
lelttrd |
⊢ ( 𝜑 → ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) < ( 𝑅 / 2 ) ) |
| 109 |
34 36 38 65 108
|
lt2halvesd |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐵 · 𝑌 ) ) + ( ( 𝐵 · 𝑌 ) 𝐷 ( 𝐶 · 𝑌 ) ) ) < 𝑅 ) |
| 110 |
30 37 38 40 109
|
lelttrd |
⊢ ( 𝜑 → ( ( 𝐵 · 𝑋 ) 𝐷 ( 𝐶 · 𝑌 ) ) < 𝑅 ) |