Metamath Proof Explorer


Theorem sranlm

Description: The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis sranlm.a A=subringAlgWS
Assertion sranlm WNrmRingSSubRingWANrmMod

Proof

Step Hyp Ref Expression
1 sranlm.a A=subringAlgWS
2 nrgngp WNrmRingWNrmGrp
3 2 adantr WNrmRingSSubRingWWNrmGrp
4 eqidd WNrmRingSSubRingWBaseW=BaseW
5 1 a1i WNrmRingSSubRingWA=subringAlgWS
6 eqid BaseW=BaseW
7 6 subrgss SSubRingWSBaseW
8 7 adantl WNrmRingSSubRingWSBaseW
9 5 8 srabase WNrmRingSSubRingWBaseW=BaseA
10 5 8 sraaddg WNrmRingSSubRingW+W=+A
11 10 oveqdr WNrmRingSSubRingWxBaseWyBaseWx+Wy=x+Ay
12 5 8 srads WNrmRingSSubRingWdistW=distA
13 12 reseq1d WNrmRingSSubRingWdistWBaseW×BaseW=distABaseW×BaseW
14 5 8 sratopn WNrmRingSSubRingWTopOpenW=TopOpenA
15 4 9 11 13 14 ngppropd WNrmRingSSubRingWWNrmGrpANrmGrp
16 3 15 mpbid WNrmRingSSubRingWANrmGrp
17 1 sralmod SSubRingWALMod
18 17 adantl WNrmRingSSubRingWALMod
19 5 8 srasca WNrmRingSSubRingWW𝑠S=ScalarA
20 eqid W𝑠S=W𝑠S
21 20 subrgnrg WNrmRingSSubRingWW𝑠SNrmRing
22 19 21 eqeltrrd WNrmRingSSubRingWScalarANrmRing
23 16 18 22 3jca WNrmRingSSubRingWANrmGrpALModScalarANrmRing
24 eqid normW=normW
25 eqid AbsValW=AbsValW
26 24 25 nrgabv WNrmRingnormWAbsValW
27 26 ad2antrr WNrmRingSSubRingWxBaseScalarAyBaseAnormWAbsValW
28 8 adantr WNrmRingSSubRingWxBaseScalarAyBaseASBaseW
29 simprl WNrmRingSSubRingWxBaseScalarAyBaseAxBaseScalarA
30 20 subrgbas SSubRingWS=BaseW𝑠S
31 30 adantl WNrmRingSSubRingWS=BaseW𝑠S
32 19 fveq2d WNrmRingSSubRingWBaseW𝑠S=BaseScalarA
33 31 32 eqtrd WNrmRingSSubRingWS=BaseScalarA
34 33 adantr WNrmRingSSubRingWxBaseScalarAyBaseAS=BaseScalarA
35 29 34 eleqtrrd WNrmRingSSubRingWxBaseScalarAyBaseAxS
36 28 35 sseldd WNrmRingSSubRingWxBaseScalarAyBaseAxBaseW
37 simprr WNrmRingSSubRingWxBaseScalarAyBaseAyBaseA
38 9 adantr WNrmRingSSubRingWxBaseScalarAyBaseABaseW=BaseA
39 37 38 eleqtrrd WNrmRingSSubRingWxBaseScalarAyBaseAyBaseW
40 eqid W=W
41 25 6 40 abvmul normWAbsValWxBaseWyBaseWnormWxWy=normWxnormWy
42 27 36 39 41 syl3anc WNrmRingSSubRingWxBaseScalarAyBaseAnormWxWy=normWxnormWy
43 9 10 12 nmpropd WNrmRingSSubRingWnormW=normA
44 43 adantr WNrmRingSSubRingWxBaseScalarAyBaseAnormW=normA
45 5 8 sravsca WNrmRingSSubRingWW=A
46 45 oveqdr WNrmRingSSubRingWxBaseScalarAyBaseAxWy=xAy
47 44 46 fveq12d WNrmRingSSubRingWxBaseScalarAyBaseAnormWxWy=normAxAy
48 42 47 eqtr3d WNrmRingSSubRingWxBaseScalarAyBaseAnormWxnormWy=normAxAy
49 subrgsubg SSubRingWSSubGrpW
50 49 ad2antlr WNrmRingSSubRingWxBaseScalarAyBaseASSubGrpW
51 eqid normW𝑠S=normW𝑠S
52 20 24 51 subgnm2 SSubGrpWxSnormW𝑠Sx=normWx
53 50 35 52 syl2anc WNrmRingSSubRingWxBaseScalarAyBaseAnormW𝑠Sx=normWx
54 19 adantr WNrmRingSSubRingWxBaseScalarAyBaseAW𝑠S=ScalarA
55 54 fveq2d WNrmRingSSubRingWxBaseScalarAyBaseAnormW𝑠S=normScalarA
56 55 fveq1d WNrmRingSSubRingWxBaseScalarAyBaseAnormW𝑠Sx=normScalarAx
57 53 56 eqtr3d WNrmRingSSubRingWxBaseScalarAyBaseAnormWx=normScalarAx
58 44 fveq1d WNrmRingSSubRingWxBaseScalarAyBaseAnormWy=normAy
59 57 58 oveq12d WNrmRingSSubRingWxBaseScalarAyBaseAnormWxnormWy=normScalarAxnormAy
60 48 59 eqtr3d WNrmRingSSubRingWxBaseScalarAyBaseAnormAxAy=normScalarAxnormAy
61 60 ralrimivva WNrmRingSSubRingWxBaseScalarAyBaseAnormAxAy=normScalarAxnormAy
62 eqid BaseA=BaseA
63 eqid normA=normA
64 eqid A=A
65 eqid ScalarA=ScalarA
66 eqid BaseScalarA=BaseScalarA
67 eqid normScalarA=normScalarA
68 62 63 64 65 66 67 isnlm ANrmModANrmGrpALModScalarANrmRingxBaseScalarAyBaseAnormAxAy=normScalarAxnormAy
69 23 61 68 sylanbrc WNrmRingSSubRingWANrmMod