Description: The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sranlm.a | |
|
Assertion | sranlm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sranlm.a | |
|
2 | nrgngp | |
|
3 | 2 | adantr | |
4 | eqidd | |
|
5 | 1 | a1i | |
6 | eqid | |
|
7 | 6 | subrgss | |
8 | 7 | adantl | |
9 | 5 8 | srabase | |
10 | 5 8 | sraaddg | |
11 | 10 | oveqdr | |
12 | 5 8 | srads | |
13 | 12 | reseq1d | |
14 | 5 8 | sratopn | |
15 | 4 9 11 13 14 | ngppropd | |
16 | 3 15 | mpbid | |
17 | 1 | sralmod | |
18 | 17 | adantl | |
19 | 5 8 | srasca | |
20 | eqid | |
|
21 | 20 | subrgnrg | |
22 | 19 21 | eqeltrrd | |
23 | 16 18 22 | 3jca | |
24 | eqid | |
|
25 | eqid | |
|
26 | 24 25 | nrgabv | |
27 | 26 | ad2antrr | |
28 | 8 | adantr | |
29 | simprl | |
|
30 | 20 | subrgbas | |
31 | 30 | adantl | |
32 | 19 | fveq2d | |
33 | 31 32 | eqtrd | |
34 | 33 | adantr | |
35 | 29 34 | eleqtrrd | |
36 | 28 35 | sseldd | |
37 | simprr | |
|
38 | 9 | adantr | |
39 | 37 38 | eleqtrrd | |
40 | eqid | |
|
41 | 25 6 40 | abvmul | |
42 | 27 36 39 41 | syl3anc | |
43 | 9 10 12 | nmpropd | |
44 | 43 | adantr | |
45 | 5 8 | sravsca | |
46 | 45 | oveqdr | |
47 | 44 46 | fveq12d | |
48 | 42 47 | eqtr3d | |
49 | subrgsubg | |
|
50 | 49 | ad2antlr | |
51 | eqid | |
|
52 | 20 24 51 | subgnm2 | |
53 | 50 35 52 | syl2anc | |
54 | 19 | adantr | |
55 | 54 | fveq2d | |
56 | 55 | fveq1d | |
57 | 53 56 | eqtr3d | |
58 | 44 | fveq1d | |
59 | 57 58 | oveq12d | |
60 | 48 59 | eqtr3d | |
61 | 60 | ralrimivva | |
62 | eqid | |
|
63 | eqid | |
|
64 | eqid | |
|
65 | eqid | |
|
66 | eqid | |
|
67 | eqid | |
|
68 | 62 63 64 65 66 67 | isnlm | |
69 | 23 61 68 | sylanbrc | |