Step |
Hyp |
Ref |
Expression |
1 |
|
sranlm.a |
|
2 |
|
nrgngp |
|
3 |
2
|
adantr |
|
4 |
|
eqidd |
|
5 |
1
|
a1i |
|
6 |
|
eqid |
|
7 |
6
|
subrgss |
|
8 |
7
|
adantl |
|
9 |
5 8
|
srabase |
|
10 |
5 8
|
sraaddg |
|
11 |
10
|
oveqdr |
|
12 |
5 8
|
srads |
|
13 |
12
|
reseq1d |
|
14 |
5 8
|
sratopn |
|
15 |
4 9 11 13 14
|
ngppropd |
|
16 |
3 15
|
mpbid |
|
17 |
1
|
sralmod |
|
18 |
17
|
adantl |
|
19 |
5 8
|
srasca |
|
20 |
|
eqid |
|
21 |
20
|
subrgnrg |
|
22 |
19 21
|
eqeltrrd |
|
23 |
16 18 22
|
3jca |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
24 25
|
nrgabv |
|
27 |
26
|
ad2antrr |
|
28 |
8
|
adantr |
|
29 |
|
simprl |
|
30 |
20
|
subrgbas |
|
31 |
30
|
adantl |
|
32 |
19
|
fveq2d |
|
33 |
31 32
|
eqtrd |
|
34 |
33
|
adantr |
|
35 |
29 34
|
eleqtrrd |
|
36 |
28 35
|
sseldd |
|
37 |
|
simprr |
|
38 |
9
|
adantr |
|
39 |
37 38
|
eleqtrrd |
|
40 |
|
eqid |
|
41 |
25 6 40
|
abvmul |
|
42 |
27 36 39 41
|
syl3anc |
|
43 |
9 10 12
|
nmpropd |
|
44 |
43
|
adantr |
|
45 |
5 8
|
sravsca |
|
46 |
45
|
oveqdr |
|
47 |
44 46
|
fveq12d |
|
48 |
42 47
|
eqtr3d |
|
49 |
|
subrgsubg |
|
50 |
49
|
ad2antlr |
|
51 |
|
eqid |
|
52 |
20 24 51
|
subgnm2 |
|
53 |
50 35 52
|
syl2anc |
|
54 |
19
|
adantr |
|
55 |
54
|
fveq2d |
|
56 |
55
|
fveq1d |
|
57 |
53 56
|
eqtr3d |
|
58 |
44
|
fveq1d |
|
59 |
57 58
|
oveq12d |
|
60 |
48 59
|
eqtr3d |
|
61 |
60
|
ralrimivva |
|
62 |
|
eqid |
|
63 |
|
eqid |
|
64 |
|
eqid |
|
65 |
|
eqid |
|
66 |
|
eqid |
|
67 |
|
eqid |
|
68 |
62 63 64 65 66 67
|
isnlm |
|
69 |
23 61 68
|
sylanbrc |
|