| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtr |
⊢ ( Ord 𝐴 → Tr 𝐴 ) |
| 2 |
|
ordfr |
⊢ ( Ord 𝐴 → E Fr 𝐴 ) |
| 3 |
|
tz7.2 |
⊢ ( ( Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) |
| 4 |
3
|
3exp |
⊢ ( Tr 𝐴 → ( E Fr 𝐴 → ( 𝐵 ∈ 𝐴 → ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) ) ) |
| 5 |
1 2 4
|
sylc |
⊢ ( Ord 𝐴 → ( 𝐵 ∈ 𝐴 → ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ∈ 𝐴 → ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) ) |
| 7 |
|
pssdifn0 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) |
| 8 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
| 9 |
|
tz7.5 |
⊢ ( ( Ord 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) |
| 10 |
8 9
|
mp3an2 |
⊢ ( ( Ord 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) |
| 11 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 12 |
|
trss |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
| 13 |
|
difin0ss |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 14 |
13
|
com12 |
⊢ ( 𝑥 ⊆ 𝐴 → ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥 ⊆ 𝐵 ) ) |
| 15 |
11 12 14
|
syl56 |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥 ⊆ 𝐵 ) ) ) |
| 16 |
1 15
|
syl |
⊢ ( Ord 𝐴 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥 ⊆ 𝐵 ) ) ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → 𝑥 ⊆ 𝐵 ) ) ) |
| 18 |
17
|
imp32 |
⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝑥 ⊆ 𝐵 ) |
| 19 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
| 20 |
19
|
biimpcd |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑦 = 𝑥 → 𝑥 ∈ 𝐵 ) ) |
| 21 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝐵 ) |
| 22 |
20 21
|
nsyli |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑦 = 𝑥 ) ) |
| 23 |
22
|
imp |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) → ¬ 𝑦 = 𝑥 ) |
| 24 |
23
|
adantll |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) → ¬ 𝑦 = 𝑥 ) |
| 25 |
24
|
adantl |
⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → ¬ 𝑦 = 𝑥 ) |
| 26 |
|
trel |
⊢ ( Tr 𝐵 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 27 |
26
|
expcomd |
⊢ ( Tr 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝐵 ) ) ) |
| 28 |
27
|
imp |
⊢ ( ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝐵 ) ) |
| 29 |
28 21
|
nsyli |
⊢ ( ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝑦 ) ) |
| 30 |
29
|
ex |
⊢ ( Tr 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 31 |
30
|
adantld |
⊢ ( Tr 𝐵 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 32 |
31
|
imp32 |
⊢ ( ( Tr 𝐵 ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → ¬ 𝑥 ∈ 𝑦 ) |
| 33 |
32
|
adantll |
⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → ¬ 𝑥 ∈ 𝑦 ) |
| 34 |
|
ordwe |
⊢ ( Ord 𝐴 → E We 𝐴 ) |
| 35 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐴 ) |
| 36 |
35 11
|
anim12i |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
| 37 |
|
wecmpep |
⊢ ( ( E We 𝐴 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ∈ 𝑦 ) ) |
| 38 |
34 36 37
|
syl2an |
⊢ ( ( Ord 𝐴 ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ∈ 𝑦 ) ) |
| 39 |
38
|
adantlr |
⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → ( 𝑦 ∈ 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ∈ 𝑦 ) ) |
| 40 |
25 33 39
|
ecase23d |
⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) → 𝑦 ∈ 𝑥 ) |
| 41 |
40
|
exp44 |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 42 |
41
|
com34 |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑥 ) ) ) ) |
| 43 |
42
|
imp31 |
⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑥 ) ) |
| 44 |
43
|
ssrdv |
⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝐵 ⊆ 𝑥 ) |
| 45 |
44
|
adantrr |
⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝐵 ⊆ 𝑥 ) |
| 46 |
18 45
|
eqssd |
⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝑥 = 𝐵 ) |
| 47 |
11
|
ad2antrl |
⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝑥 ∈ 𝐴 ) |
| 48 |
46 47
|
eqeltrrd |
⊢ ( ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ ) ) → 𝐵 ∈ 𝐴 ) |
| 49 |
48
|
rexlimdvaa |
⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐴 ∖ 𝐵 ) ∩ 𝑥 ) = ∅ → 𝐵 ∈ 𝐴 ) ) |
| 50 |
10 49
|
syl5 |
⊢ ( ( ( Ord 𝐴 ∧ Tr 𝐵 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( Ord 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ≠ ∅ ) → 𝐵 ∈ 𝐴 ) ) |
| 51 |
50
|
exp4b |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( Ord 𝐴 → ( ( 𝐴 ∖ 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐴 ) ) ) ) |
| 52 |
51
|
com23 |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( Ord 𝐴 → ( 𝐵 ⊆ 𝐴 → ( ( 𝐴 ∖ 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐴 ) ) ) ) |
| 53 |
52
|
adantrd |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( ( 𝐴 ∖ 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐴 ) ) ) ) |
| 54 |
53
|
pm2.43i |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( ( 𝐴 ∖ 𝐵 ) ≠ ∅ → 𝐵 ∈ 𝐴 ) ) ) |
| 55 |
7 54
|
syl7 |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) ) |
| 56 |
55
|
exp4a |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) |
| 57 |
56
|
pm2.43d |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) |
| 58 |
57
|
impd |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) → 𝐵 ∈ 𝐴 ) ) |
| 59 |
6 58
|
impbid |
⊢ ( ( Ord 𝐴 ∧ Tr 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) ) |