Metamath Proof Explorer


Theorem tz7.7

Description: A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of TakeutiZaring p. 37. (Contributed by NM, 5-May-1994)

Ref Expression
Assertion tz7.7 Ord A Tr B B A B A B A

Proof

Step Hyp Ref Expression
1 ordtr Ord A Tr A
2 ordfr Ord A E Fr A
3 tz7.2 Tr A E Fr A B A B A B A
4 3 3exp Tr A E Fr A B A B A B A
5 1 2 4 sylc Ord A B A B A B A
6 5 adantr Ord A Tr B B A B A B A
7 pssdifn0 B A B A A B
8 difss A B A
9 tz7.5 Ord A A B A A B x A B A B x =
10 8 9 mp3an2 Ord A A B x A B A B x =
11 eldifi x A B x A
12 trss Tr A x A x A
13 difin0ss A B x = x A x B
14 13 com12 x A A B x = x B
15 11 12 14 syl56 Tr A x A B A B x = x B
16 1 15 syl Ord A x A B A B x = x B
17 16 ad2antrr Ord A Tr B B A x A B A B x = x B
18 17 imp32 Ord A Tr B B A x A B A B x = x B
19 eleq1w y = x y B x B
20 19 biimpcd y B y = x x B
21 eldifn x A B ¬ x B
22 20 21 nsyli y B x A B ¬ y = x
23 22 imp y B x A B ¬ y = x
24 23 adantll B A y B x A B ¬ y = x
25 24 adantl Ord A Tr B B A y B x A B ¬ y = x
26 trel Tr B x y y B x B
27 26 expcomd Tr B y B x y x B
28 27 imp Tr B y B x y x B
29 28 21 nsyli Tr B y B x A B ¬ x y
30 29 ex Tr B y B x A B ¬ x y
31 30 adantld Tr B B A y B x A B ¬ x y
32 31 imp32 Tr B B A y B x A B ¬ x y
33 32 adantll Ord A Tr B B A y B x A B ¬ x y
34 ordwe Ord A E We A
35 ssel2 B A y B y A
36 35 11 anim12i B A y B x A B y A x A
37 wecmpep E We A y A x A y x y = x x y
38 34 36 37 syl2an Ord A B A y B x A B y x y = x x y
39 38 adantlr Ord A Tr B B A y B x A B y x y = x x y
40 25 33 39 ecase23d Ord A Tr B B A y B x A B y x
41 40 exp44 Ord A Tr B B A y B x A B y x
42 41 com34 Ord A Tr B B A x A B y B y x
43 42 imp31 Ord A Tr B B A x A B y B y x
44 43 ssrdv Ord A Tr B B A x A B B x
45 44 adantrr Ord A Tr B B A x A B A B x = B x
46 18 45 eqssd Ord A Tr B B A x A B A B x = x = B
47 11 ad2antrl Ord A Tr B B A x A B A B x = x A
48 46 47 eqeltrrd Ord A Tr B B A x A B A B x = B A
49 48 rexlimdvaa Ord A Tr B B A x A B A B x = B A
50 10 49 syl5 Ord A Tr B B A Ord A A B B A
51 50 exp4b Ord A Tr B B A Ord A A B B A
52 51 com23 Ord A Tr B Ord A B A A B B A
53 52 adantrd Ord A Tr B Ord A Tr B B A A B B A
54 53 pm2.43i Ord A Tr B B A A B B A
55 7 54 syl7 Ord A Tr B B A B A B A B A
56 55 exp4a Ord A Tr B B A B A B A B A
57 56 pm2.43d Ord A Tr B B A B A B A
58 57 impd Ord A Tr B B A B A B A
59 6 58 impbid Ord A Tr B B A B A B A