| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vol0 |
⊢ ( vol ‘ ∅ ) = 0 |
| 2 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,] 𝐴 ) = ( 𝐴 (,] 𝐵 ) ) |
| 3 |
2
|
eqcomd |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,] 𝐵 ) = ( 𝐴 (,] 𝐴 ) ) |
| 4 |
|
leid |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ 𝐴 ) |
| 5 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 6 |
|
ioc0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐴 (,] 𝐴 ) = ∅ ↔ 𝐴 ≤ 𝐴 ) ) |
| 7 |
5 5 6
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 (,] 𝐴 ) = ∅ ↔ 𝐴 ≤ 𝐴 ) ) |
| 8 |
4 7
|
mpbird |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 (,] 𝐴 ) = ∅ ) |
| 9 |
3 8
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → ( 𝐴 (,] 𝐵 ) = ∅ ) |
| 10 |
9
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( vol ‘ ∅ ) ) |
| 11 |
|
eqcom |
⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) |
| 12 |
11
|
biimpi |
⊢ ( 𝐴 = 𝐵 → 𝐵 = 𝐴 ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐵 = 𝐴 ) |
| 14 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ ℂ ) |
| 16 |
13 15
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ ℂ ) |
| 17 |
16 13
|
subeq0bd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → ( 𝐵 − 𝐴 ) = 0 ) |
| 18 |
1 10 17
|
3eqtr4a |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 19 |
18
|
3ad2antl1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 = 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 20 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ∈ ℝ ) |
| 21 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 22 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 23 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
| 24 |
23
|
biimpi |
⊢ ( 𝐵 = 𝐴 → 𝐴 = 𝐵 ) |
| 25 |
24
|
necon3bi |
⊢ ( ¬ 𝐴 = 𝐵 → 𝐵 ≠ 𝐴 ) |
| 26 |
25
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ≠ 𝐴 ) |
| 27 |
20 21 22 26
|
leneltd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 < 𝐵 ) |
| 28 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 29 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
| 30 |
29
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 31 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
| 32 |
|
ioounsn |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| 33 |
28 30 31 32
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| 34 |
33
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,] 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 35 |
34
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 36 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
| 37 |
36
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 38 |
|
snmbl |
⊢ ( 𝐵 ∈ ℝ → { 𝐵 } ∈ dom vol ) |
| 39 |
38
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → { 𝐵 } ∈ dom vol ) |
| 40 |
|
ubioo |
⊢ ¬ 𝐵 ∈ ( 𝐴 (,) 𝐵 ) |
| 41 |
|
disjsn |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 42 |
40 41
|
mpbir |
⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) = ∅ |
| 43 |
42
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) = ∅ ) |
| 44 |
|
ioovolcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 45 |
44
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 46 |
|
volsn |
⊢ ( 𝐵 ∈ ℝ → ( vol ‘ { 𝐵 } ) = 0 ) |
| 47 |
|
0red |
⊢ ( 𝐵 ∈ ℝ → 0 ∈ ℝ ) |
| 48 |
46 47
|
eqeltrd |
⊢ ( 𝐵 ∈ ℝ → ( vol ‘ { 𝐵 } ) ∈ ℝ ) |
| 49 |
48
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ { 𝐵 } ) ∈ ℝ ) |
| 50 |
|
volun |
⊢ ( ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ { 𝐵 } ∈ dom vol ∧ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) = ∅ ) ∧ ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ∧ ( vol ‘ { 𝐵 } ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐵 } ) ) ) |
| 51 |
37 39 43 45 49 50
|
syl32anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐵 } ) ) ) |
| 52 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
| 53 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 54 |
52 53 31
|
ltled |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 55 |
|
volioo |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 56 |
52 53 54 55
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 57 |
46
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ { 𝐵 } ) = 0 ) |
| 58 |
56 57
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐵 } ) ) = ( ( 𝐵 − 𝐴 ) + 0 ) ) |
| 59 |
53
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 60 |
14
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℂ ) |
| 61 |
59 60
|
subcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 62 |
61
|
addridd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 − 𝐴 ) + 0 ) = ( 𝐵 − 𝐴 ) ) |
| 63 |
58 62
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐵 } ) ) = ( 𝐵 − 𝐴 ) ) |
| 64 |
35 51 63
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 65 |
20 21 27 64
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 66 |
19 65
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |